Al-Mustaqbal University College

Chemical Engineering and Petroleum Industries department

Chapter (3)

Measures of Location

When raw data is classified in to a frequency distribution table and presented graphically, the major features of the sample become apparent. However, to make quantitative decisions, further condensation in to a number of statistical parameters is needed.

Measures of location are statistical parameters, giving an estimate of the data centre, being typical of all measurement.

Mode : Is the measurement that occurs with the greatest frequency.

١

e. g. for sample :
14, 19, 16, 21, 19, 24, 18, 19
Mode = 19
For sample : 6, 7, 7, 3, 8, 3, 9, 5
Mode = 3, 7
(bimodal)

For grouped data, the mode corresponds to the top of the frequency curve.

$$mode = L_m + \frac{\Delta L}{\Delta L + \Delta H} C_m$$

Where:

L_m is lower boundary of modal class

 $\Delta L = f_m - f_{lower class}$

 $\Delta H = f_m - f_{higher class}$

 C_m = width of modal class

If there are two or more classes having the same highest frequency the formula to be used is:-

Mode = 3 (median) - 2 (mean)

e.g. for electric bulbs sample :

	Class limit	Class bound.	Class mark	Freq.	
1.	663-675	662.5-675.5	669.	(4)	4
2.	676-688	675.5-688.5	682	10	14
3.	689-701	688.5-701.5	695	15	29
4.	702-714	701.5-714.5	708	11	40
5.	715-727	714.5-727.5	721	6	46
6.	728-740	727.5-740.5	734	4	50

$$\sum f = 50$$

 $mode = 688.5 + \frac{15 - 10}{(15 - 10) + (15 - 11)} (13) = 695.7$

Median : Is the middle measurement of an ordered array (odd). Or the arithmetic mean of the two middle values (even).

e. g. for sample : 3, 4, 4, 5, 6, 8, 8, 10, 11 median = 6 for sample : 5, 5, 7, 9, 11, 12, 15, 18 median = 10

* For grouped data, the median line halves the area under the frequency curve.

$$median = L_m + \frac{\frac{N}{2} - f_{CL}}{f_m} C_m$$

Where :

 L_m is lower boundary of median class

N is sample size

F_{CL} is cumulative frequency of lower class

 f_m is frequency of median class

 C_m is width of median class

e. g. for electric bulbs sample :

 $3^{\rm rd}$ class is median class, since $f_c = 29 > \frac{N}{2}$

median = $688.5 + \frac{\frac{50}{2} - 14}{15}$ (13) = 689.0

<u>Arithmetic Mean:</u> is the sum of measurements divided by sample size.

$$\overline{x} = \frac{\sum x_i}{N}$$

For grouped data :

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

e. g. for electric bulbs sample:

 $Xi = class mark, \sum fi = N$

Class Mark	fi	fi xi
(xi)		
669	4	2676
682	10	6820
695	15	10425
708	11	7788
721	6	4326
734	4	2936
		\sum fi xi = 34971

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

$$=\frac{34971}{50}=699.42$$

Other Mean Measures :

* Geometric Mean $G = (\pi x_i)^{\frac{1}{N}}$, $\log G = \frac{\sum f_i \log x_i}{N}$ * Harmonic Mean $H = \frac{N}{\sum \frac{1}{x_i}}$, $H = \frac{N}{\sum \frac{f_i}{x_i}}$

* Root Mean Square

$$RMS = \sqrt{\frac{\sum x_i^2}{N}}$$
, $RMs = \sqrt{\frac{\sum f_i x_i^2}{N}}$

For a sample of positive measurements,

 $H \leq G \leq \bar{x} \leq RMS$

Other Mean Measures

1-Geometric Mean

$$Log G = \frac{\sum fi \log xi}{N}$$

xi	fi	fi log xi
669	4	11.3017
682	10	28.3378
695	15	42.6297
708	11	31.3503
721	6	17.1476
734	4	11.4627
		\sum fi log xi = 142.2298

 $Log G = \frac{142.2298}{50} = 2.84459$ G = 699.2

2- Harmonic Mean

$$\mathbf{H} = \frac{N}{\sum \frac{\mathbf{fi}}{xi}}$$

xi	fi	fi
	11	
		xl
669	4	0.005979
682	10	0.0146627
695	15	0.021582
708	11	0.155367
721	6	0.00832177
734	4	0.005449
		$\sum \frac{fi}{xi} = 0.071532$

$$H = \frac{N}{\sum \frac{fi}{xi}} = \frac{50}{0.071532} = 699$$

3- Root Mean Square

R. M. S =
$$\sqrt{\frac{\sum fi xi^2}{N}}$$

xi	fi	xi ²	fi xi ²
669	4	447561	1790244
682	10	465124	4651240
695	15	483025	7245375
708	11	501264	5513904
721	6	519841	3119046
734	4	538756	2155024
			$\sum fi xi^2 = 24474833$

R. M. S =
$$\sqrt{\frac{24474833}{50}}$$

R. M. S = 699.6

$$H \leq G \leq \bar{x} \leq RMS$$

$$699 \le 699.2 \le 699.4 \le 699.6$$

Properties of the Arithmetic Mean :

1. The sum of deviations of the data from their arithmetic mean is zero.

 $\sum (x_i - \bar{x}) = 0$ (prove)

2. For several samples, the combined mean is given by:

$$\bar{x} = \frac{N_1 \overline{x_1} + N_2 \overline{x_2} + \dots}{N_1 + N_2 + \dots}$$

3. If the deviations (d_i) from any value (A) are available, then :

$$\bar{x} = A + \frac{\sum d_i}{N}$$
 where $d_i = x_i - A$ (prove)
Or $\bar{x} = A + \frac{\sum f_i d_i}{N}$ (grouped data)

Eng. Statistics and Measurements

Asst. Lect. Maryam Jawad

- Properties of the Arthmetic Mean:-A-Properties of R 1. The sum of devictions of the data from their BCXI-X) = 0 Prove that For group date or Thematic mean is ZER-set. where in the fire while fire (التوايت فر 8 خار في معالقسمة وهذا من خواجر الجمع) $\vec{X} = \frac{\xi F_{iXi}}{2F_{i}}$ $A = \frac{\xi F_{iXi}}{2F_{i}}$: E fixi- Efixi-0

Eng. Statistics and Measurements

11 2- for several Samples, The combindmean is given by :- $\overline{X} = \frac{N_1 \overline{X}_1 + N_2 \overline{X}_2 + N_3 \overline{X}_3}{N_1 + N^2 + N^3 - \cdots} \xrightarrow{\text{dota}(2)} \xrightarrow{\text{dota}(2)}$ where data(2) dota(2) d \overline{X}_2 \overline{X}_1 \overline{X}_2 Sample N_1 \overline{X}_1 \overline{X}_2 Combined \overline{X} Sample N_3 \overline{X}_3 If NI = NZ = NS $\therefore \overline{X} = \frac{N_1 \overline{X}_1 + N_1 \overline{X}_2 + N_1 \overline{X}_2}{N_1 + N_1 + N_1}$ -- X = Mi (X1+X2+X3) 2 Mi $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$

Eng. Statistics and Measurements

3- if the deviations (di) From any value(A)
ave availables then:
IF di=Xi-A-...D A constant
Prove that

$$\overline{X} = A + \frac{\sum Fid.}{N}$$
 For group data
 $\overline{X} = A + \frac{\sum Fid.}{N}$ For group data
 $\overline{X} = di + A$
 $\overline{X} = di + A$
 $\overline{X} = \frac{\sum Fi. \sum di + A}{\sum Fi}$
 $\overline{X} = \frac{\sum Fi. \sum di + A}{\sum Fi}$
 $\overline{X} = \frac{\sum Fi. \sum di + A \sum Fi}{\sum Fi}$
 $\overline{X} = \frac{\sum Fi. di + A \sum Fi}{\sum Fi}$
 $\overline{X} = \frac{\sum Fi. di}{\sum Fi} + \frac{A \sum Fi}{\sum Fi}$
 $\overline{X} = \frac{\sum Fi. di}{\sum Fi} + \frac{\sum Fi. di}{\sum Fi}$
 $\overline{X} = \frac{\sum Fi. di}{\sum Fi} + \frac{\sum Fi. di}{\sum Fi}$
 $\overline{X} = A + \frac{\sum Fi. di}{\sum F}$