

Al-Mustaqbal University

College of Engineering \& Technology
 Department of

Electrical Engineering Techniques
AC ELECTRICAL CIRCUITS
Asst. Lec.
ALI IMAD

8-Representing AC Voltages and Currents by Complex Numbers:

The sinusoidal voltage $e(t)=200 \sin \left(\mathrm{w} t+40^{\circ}\right)$ of Figure 14(a) and (b) can be represented by its phasor equivalent, $E=200 \mathrm{~V}\llcorner 40$, as in (c).

(a) $e=200 \sin \left(\omega t+40^{\circ}\right) \mathrm{V}$

(b) Waveform

(c) Phasor equivalent

Figure 14
To convert between forms:

$$
\begin{array}{cc}
C=a+j b & (\text { rectangular form) } \\
C=c \angle \theta & (\text { polar form) } \\
a=c \cos \theta, \quad b=c \sin \theta, & c=\sqrt{a^{2}+b^{2}}, \quad \text { and } \quad \theta=\tan ^{-1} \frac{b}{a} \\
j=\sqrt{-1}, \quad j^{2}=-1, \quad j^{3}=-j, \quad j^{4}=1, \text { and } \quad j=\frac{-1}{j}
\end{array}
$$

The conjugate of a complex number (denoted by an asterisk *) is a complex number with the same real part but the opposite imaginary part. Thus, the conjugate of $C=c \angle \theta=a+$ $j b$ is $C^{*}=c \angle-\theta=a-j b$. For example, if $C=3+j 4=5 \angle 53.13^{\circ}$, then $C^{*}=5 \angle-$ $53.13^{\circ}=3-j 4$.

EXAMPLE For Figure 15, $v_{1}=\sqrt{2}(16) \sin w t V, v_{2}=\sqrt{2}(24) \sin \left(w t+90^{\circ}\right) V, v_{3}=$ $\sqrt{2}(15) \sin \left(w t-90^{\circ}\right) V$. Determine source voltage e.

Figure 15

solution:

Applying KVL:

$$
\begin{aligned}
E=V_{1}+V_{2}+V_{3} & =16 \angle 0^{\circ}+24 \angle 90^{\circ}+15 \angle-90^{\circ} \\
& =16+j 0+24 j-15 j=16+9 j=18.36 \angle 29.36^{\circ} \\
& =\sqrt{2}(18.36) \sin \left(w t+29.36^{\circ}\right) V
\end{aligned}
$$

H.W: For figure $16, i_{1}=\sqrt{2}(23) \operatorname{sinwt} m A, i_{2}=\sqrt{2}(0.29) \sin \left(w t+63^{\circ}\right) A$, and $i_{2}=$ $\sqrt{2}(127) \times 10^{-3} \sin \left(w t-72^{\circ}\right) A$. Determine current i_{T}.

Figure 16
Ans. $i_{T}=\sqrt{2}(238) \times 10^{-3} \sin \left(w t+35.4^{\circ}\right) A$

9.Ohm's Law for AC Circuits:

-Resistors

when a resistor is subjected to a sinusoidal voltage as shown in Figure 17, the resulting current is also sinusoidal and in phase with the voltage.

(b)

Figure 17

The sinusoidal voltage $v=V_{m} \sin (w t+\theta)$ may be written in phasor form as $\mathbf{V}=V \angle \theta^{\circ}$. Whereas the sinusoidal expression gives the instantaneous value of voltage for awaveform having an amplitude of V_{m} (volts peak), the phasor form has amagnitude which is the effective (or rms) value.

The voltage and current phasors may be shown on a phasor diagram as in Figure 18.

Figure 18

Example:

Refer to the resistor shown in Figure 19:
a. Find the sinusoidal current i using phasors.
b. Sketch the sinusoidal waveforms for v and i.
c. Sketch the phasor diagram of \mathbf{V} and \mathbf{I}.

Figure 19

Solution:

a. The phasor form of the voltage is determined as follows:

$$
v=72 \sin w t \leftrightarrow 50.9 \mathrm{~V} \angle 0^{\circ}
$$

From Ohm's law, the current phasor is determined to be

$$
I=\frac{V}{Z_{R}}=\frac{50.9 V \angle 0^{\circ}}{18 \Omega \angle 0^{\circ}}=2.83 A \angle 0^{\circ}
$$

which results in the sinusoidal current waveform having an amplitude of $i=4$ sinwt b \&c. The voltage- current waveforms, and phasor are shown in Figure 20.

Figure 20

H.W:

Refer to the resistor of Figure 21:
a. Use phasor algebra to find the sinusoidal voltage, v.
b. Sketch the sinusoidal waveforms for v and i.
c. Sketch a phasor diagram showing \mathbf{V} and \mathbf{I}.

Figure 21

- Inductors

When an inductor is subjected to a sinusoidal current, a sinusoidal voltage is induced across the inductor such that the voltage across the inductor leads the current waveform by exactly 90°. If we know the reactance of an inductor, then from Ohm's law the current in the inductor may be expressed in phasor form as:

$$
I=\frac{V}{Z_{L}}=\frac{V \angle \theta^{\circ}}{X_{L} \angle 90^{\circ}}=\frac{V}{X_{L}} \angle\left(\theta^{\circ}-90^{\circ}\right)
$$

In vector form, the reactance of the inductor is given as: $Z_{L}=X_{L} \angle 90^{\circ}$

$$
\text { where } X_{L}=w L=2 \pi f L
$$

Example: Consider the inductor shown in Figure 22:
a. Determine the sinusoidal expssion for the current i using phasors.
b. Sketch the sinusoidal waveforms for v and i.
c. Sketch the phasor diagram showing \mathbf{V} and \mathbf{I}.

Solution:

a. The phasor form of the voltage is determined as follows:

$$
v=1.05 \sin \left(w t+120^{\circ}\right) \leftrightarrow 0.742 \mathrm{~V} \angle 120^{\circ}
$$

From Ohm's law, the current phasor is determined to be

$$
I=\frac{V}{Z_{R}}=\frac{0.742 V \angle 120^{\circ}}{25 \Omega \angle 90^{\circ}}=29.7 \mathrm{~mA} \angle 30^{\circ}
$$

The amplitude of the sinusoidal current is

$$
I_{m}=(\sqrt{2})(29.7)=42 \mathrm{~mA}
$$

The current i is now written as

$$
i=0.042 \sin \left(w t+30^{\circ}\right)
$$

b. Figure 23 shows the sinusoidal waveforms of the voltage and current.

Figure 23

$$
\mathrm{V}=0.742 \mathrm{~V} \angle 120^{\circ}
$$

c. The voltage and current phasors are shown in Figure 23.

Figure23

- Capacitors:

When a capacitor is subjected to a sinusoidal voltage, a sinusoidal current results. The current through the capacitor leads the voltage by exactly 90°. If we know the reactance of a capacitor, then from Ohm's law the current in the capacitor expressed in phasor form is:

$$
I=\frac{V}{Z_{C}}=\frac{V \angle \theta^{\circ}}{X_{C} \angle-90^{\circ}}=\frac{V}{X_{C}} \angle\left(\theta^{\circ}+90^{\circ}\right)
$$

In vector form, the reactance of the capacitor is given as

$$
Z_{C}=X_{C} \angle-90^{\circ} \text { where } X_{C}=\frac{1}{w C}=\frac{1}{2 \pi f C}
$$

H.W: Consider the capacitor of Figure 24.
a. Find the voltage v across the capacitor.
b. Sketch the sinusoidal waveforms for v and i.
c. Sketch the phasor diagram showing \mathbf{V} and \mathbf{I}.

Figure 24

Practice problems:

Q1:

A voltage source, $\mathbf{E}=10 \mathrm{~V} \angle 30^{\circ}$, is applied to an inductive impedance of 50Ω.
a. Solve for the phasor current, I.
b. Sketch the phasor diagram for \mathbf{E} and \mathbf{I}.
c. Write the sinusoidal expressions for e and i.
d. Sketch the sinusoidal expressions for e and i.

Answers:

a. $\mathbf{I}=0.2 \mathrm{~A} \angle-60^{\circ}$
c. $e=14.1 \sin \left(\omega t+30^{\circ}\right)$
$i=0.283 \sin \left(\omega t-60^{\circ}\right)$

Q2:

A voltage source, $\mathbf{E}=10 \mathrm{~V} \angle 30^{\circ}$, is applied to a capacitive impedance of 20Ω.
a. Solve for the phasor current, I.
b. Sketch the phasor diagram for \mathbf{E} and \mathbf{I}.
c. Write the sinusoidal expressions for e and i.
d. Sketch the sinusoidal expressions for e and i.

Answers:
a. $\mathbf{I}=0.5 \mathrm{~A} \angle 120^{\circ}$
c. $e=14.1 \sin \left(\omega t+30^{\circ}\right)$

$$
i=0.707 \sin \left(\omega t+120^{\circ}\right)
$$

