AL-Mustaqbal University								
College of Engineering and Technology								
Department of								
Medical Instrumentation Techniques								
Engineering								

Subject: Control systems Lecturer: Dr. Osama Ali

Time: 3 hrs. Stage: 4th

Date: 11/5/2024

Note: Answer all questions

2023-2024 First exam

Max. Mark: 40%

Multiple Choice Questions (Marks are evenly distributed)

ividitiple choice questions (ividities are evenity distributed)
Q1) The controller input in typical feedback closed loop system is the: a) Feedback signal b) Reference input c) Output signal d) Actuating Error signal
Q2) Given the following closed loop transfer function $\frac{Y(s)}{X(s)} = \frac{4}{(s+4)}$ the solution $y(t)$ for a unit step input $x = a$ and $y(t) = 4 - e^{-4t}$ b) $y(t) = 4 - e^{-t}$ c) $y(t) = 1 - e^{-4t}$ d) $y(t) = 1 - e^{-t}$
Q3) What is the Laplace transform of 3e ^{-2t} a) 0.5/(s+3) b) 3/(s+2) c) 2/(s+3) d) 3(s+2)
Q4) An open loop control system with two blocks in series.
$G_1(s) = 0.5(s+2) / (s+1) \text{and} G_2(s) = 2 / [s(s+2)] \text{. What is the overall transfer function} \qquad Y(s) / R(s)?$ $a) \ 1 / [s(s+2)] \qquad b) \ 2.5 / [(s+1)(s+2)] \qquad c) \ 1 / [(s+2)(s+1)] \qquad d) \ 1 / s(s+1)$
Q5) Effect of feedback on sensitivity is: a) Minimum in Closed loop control system b) Minimum in both Open and closed loop control systems c) Minimum in Open loop control system d) Has no effect
Q6) Which of the following is not an example of a closed loop system? a) Respiratory system of an animal b) Operational amplifier c) Air conditioner unit. d) Robotic systems
Q7) Standard test signals in control system are: a) Impulse signal b) Ramp signal c) Unit step signal d) All of the mentioned
Q8) Unit step signal is the signal whose values is : a) One for all values of $t \ge 0$ c) One for only t=1 d) One for all values of $-\infty \le t \le \infty$
Q9) Ramp input signal a) denotes constant velocity b) It denotes constant velocity and varies linearly with time c) Value increases linearly with time d) It varies exponentially with time
Q10) The Laplace of unit impulse function $\delta(t)$ is: a) $1/s$ b) $1/s^2$ c) 1 d) $1/s + 1$
Q11) The error signal in a closed loop system is the difference between the reference input and the a) Disturbance signal b) Command input c) Controlled signal d) Feedback signal
Q12) i_L is the current passing through an Inductance (L). What is the expression of the voltage (V_L) across the inductance: a) $V_L = L$. i_L b) $V_L = L$. di_L/dt c) $V_L = i_L$. (dL/dt) d) $V_L = L$. $(i_L)^2$

Q13) The order and type of the transfer function given by $G(s) = (s+1)/(s^3+3s^2+12s)$ is of: a) order 0 and type 3 b) order 1 and type 3 c) order 3 and type 1 d) order 3 and type 0

AL-Mustagbal University College of Engineering and Technology **Department of Medical Instrumentation Techniques Engineering**

Subject: Control systems Lecturer: Dr. Osama Ali

Time: 3 hrs. Stage: 4th Date: 11/5/2024

Note: Answer all questions

2023-2024 First exam

Max. Mark: 40%

Q14) The inverse Laplace transform of any transfer function is required for evaluating the

- a) output at initial condition.
 b) input in time domain
- c) output in s domain
- d) output in time domain

Q15) The voltage source V_c is applied across a capacitor C. The current i_c passing through the capacitor is given by the following expression

- a) $i_c = (C)V_c$ b) $i_c = (C)(dv_c/dt)$ c) $i_c = V_c(dC/dt)$. d) $i_c = (C)\int V_c dt$

Q16) A block diagram consists of two blocks connected in parallel. The first block is $G1(s) = \frac{2}{s+2}$

- and the second block is $G2(s) = \frac{1}{s+1}$. Find the overall transfer function? a) $G(s) = \frac{3}{2s+3}$ b) $G(s) = \frac{s+3}{(s+1)(s+2)}$ c) $G(s) = \frac{3}{(s+1)(s+2)}$ d) $G(s) = \frac{3s+4}{(s+1)(s+2)}$

Q17) A block diagram consists of two blocks connected in series. The first block is $G1(s) = \frac{4}{s+2}$ and the second block is $G2(s) = \frac{s+3}{s+4}$. Find the overall transfer function? a) $G(s) = \frac{(s+7)}{(2s+7)}$ b) $G(s) = \frac{2(s+1)}{(s+4)}$ c) $G(s) = \frac{4}{s+4}$ d) $G(s) = \frac{4s+3}{(2s+7)}$

Q18) A unity negative feedback system with transfer function G(s) as shown in Fig.2 Find $\frac{Y(s)}{X(s)}$? a) $\frac{s+1}{s^2+4}$ b) $\frac{s+2}{s^2+3}$ c) $\frac{1}{s^2+2s+3}$ d) $\frac{s+1}{s^2+s+4}$

Q19) The Laplace of $\frac{d^2y}{dt^2} + 7\frac{dy}{dt} + 10y = 3$ is : a) $Y(s) = \frac{3}{(s+2)(s+5)}$ b) $Y(s) = \frac{3}{s(s+2)(s+5)}$ c) $Y(s) = \frac{3s}{(s+7)(s+10)}$ d) $Y(s) = \frac{3}{s(s+7)(s+10)}$

Q20) The Laplace of the PID control signal $[u(t) = 3e(t) + 7\frac{de(t)}{d(t)} + 2\int e(t)dt]$ is

- a) $U(s) = (3 + 7s + \frac{2}{s}) E(s)$ b) $U(s) = (3 + \frac{7}{s} + 2s) E(s)$
- c) U(s) = (7 + 3s + 2/s) E(s) d) $U(s) = (3s + \frac{7}{s} + 2) E(s)$

P1) For the closed loop system given by the transfer function: $\frac{Y(s)}{R(s)} = 8/[s^2 + 3.6s + 9]$ Find the following:

- Q21) The undamped natural frequency On:
- a) 9
- **b)4.8**
- **d)8**

Q22) The damping ratio ξ :

- a)0.5
- b)0.6 c)0.66 d) 0.75

- Q23) The damped natural frequency Od
- a)1.8
- b) 3.2 c)2.4 d)3.6

Q24) The closed loop poles are:

c) 3

- a) $1.8 \pm j2.4$ b) 1.2,2.4 c) -1.2,-2.4 d) $-1.8 \pm j2.4$

Q25) The peak time t_p :

- a) 0.1 b) 0.7
- c) 1.31
- d) 2.15

- Q26) The overshoot OV is approximately:
- a)2.35
- b) 0.1
- c)0.01
- d)3.25

- Q27) The settling time t_s for ±5% tolerance is:
- a)1.66s
- **b) 0.66s**
- c) 0.25s
- d) 1.25s

O28) The time constant taw τ is:

- a) 0.416s b)3.2s
- c) 0.55s
- d)2.4s

AL-Mustagbal University College of Engineering and Technology **Department of Medical Instrumentation Techniques Engineering**

Subject: Control systems Lecturer: Dr. Osama Ali

Time: 3 hrs. Stage: 4th Date: 11/5/2024

Note: Answer all questions

First exam 2023-2024 Max. Mark: 40%

Q29) For a system, the damping ratio (ζ) is 0.6 and undamped natural frequency (ω_n) is 7.85.

Find the peak time t_n ?

- a) 2s
- **b**) 5s
- c) 0.5s
- d) 0.2s
- Q30) A unity feedback system with $G(s) = \frac{8(s+5)}{s^2+9}$, The overall system is

a) underdamped

- b) overdamped
- c) critically damped d) un damped Oscillatory system

Q31) The steady state error for a type-1 system with step input is

a) 1/K_p

- $b)1/[1+K_{p}]$
- c) Zero
- d) Infinity
- Q32) The characteristic equation of a linear system is given by $s^4 + 5s^3 + 2s^2 + 5s + 6 = 0$. Check, how many poles are located at the Right hand side of the S-Plane, using the Routh criterion.

a) one pole

- b) two poles
- c) three poles
- d) no poles
- Q33) A unity feedback system with $G(s) = \frac{48(s+5)}{s(s+4)(s+2)(s+3)}$, For a unit ramp input, the steady state error is:

a) 0.5

- **b)10**
- d) 0.1
- Q34) If the poles of the closed loop system are located on the imaginary axis, the system is

a) Unstable

- b) Stable
- c) Marginally Stable
- d) Conditionally stable
- Q35) A system transfer function is give by $G(s) = \frac{8}{s^2 + 2s + 4}$, the settling time for $\pm 2\%$ tolerance is

a) 0.25s

- Q36) The maximum overshoot for a closed loop system given by $G(s) = \frac{36}{s^2 + 2s + 36}$

a) 0.44

- b) 0.587
- c)0.1
- d) 0.156
- Q37) Find the value of K in the following system $G(s) = \frac{25}{s^2 + 2K s + 25}$, Knowing that the damping ratio is 0.4?

a) 1

- b) 9
- c) 2
- d) 5
- $\frac{Y(s)}{R(s)} = \frac{72}{s^2 + 2s + 36}$; use the final value theorem to find the output y(t) at t=infinity Q38) For the system given by

(steady state output) given the input is a unit step input [r(t) = 1]

- a) 0

- d)Infinity
- Q39) Check the stability for the following system using Routh criterion

- $G(s) = \frac{2}{s^3 + 2s^2 + 3s + 8}$; H(s) = (s+3)
- a) Stable with no roots in the R.H.S of the s-plane

c)Unstable with two roots in the R.H.S of the s-plane

- b)Unstable with one root in the R.H.S of the s-plane d) Marginally stable with no roots in the R.H.S
- Q40) If the time response of the output has an overshot then definitely the system is
- a) underdamped with $\zeta > 1$
- b) overdamped with $\zeta > 1$
- c) overdamped with $1 > \zeta$
- d) underdamped with $1 > \zeta$

أجوبة مادة نظم السيطرة نموذج-1

Q1	D	Q11	D	Q21	С		Q31	С
Q2	С	Q12	В	Q22	В	-	Q32	В
Q3	В	Q13	С	Q23	С	-	Q33	D
Q4	D	Q14	В	Q24	D	-	Q34	С
Q5	Α	Q15	В	Q25	С	-	Q35	С
Q6	В	Q16	D	Q26	В	-	Q36	В
Q7	D	Q17	С	Q27	Α	-	Q37	С
Q8	Α	Q18	D	Q28	С	-	Q38	В
Q9	В	Q19	В	Q29	С	-	Q39	С
Q10	С	Q20	Α	Q30	Α	-	Q40	D

استاذ المادة

ا.م.د. اسامه علي عواد