Lab 4

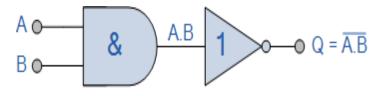
First Stage

Cyber Security Science Department

Computer Organization and Logic Design

Lab 4: NAND and XOR Gates

By

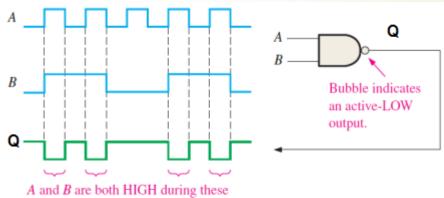

Asst. Lect. Ali Saleem Haleem

NAND and XOR Gates

1. NAND Gate

- The NAND gate is a popular logic element because it can be used as a universal gate; that is, NAND gates can be used in combination to perform the AND, OR, and inverter operations.
- ✤ The NAND gate is equivalent to an AND gate followed by NOT gate
- ♦ Boolean Expression Q = A B

1.1 Logic NAND Gate Equivalence



2-input "AND" gate plus a "NOT" gate

The logic or Boolean expression given for a logic NAND gate is that for *Logical Addition*, which is the opposite to the AND gate, and which it performs on the *complements* of the inputs. The Boolean expression for a logic NAND gate is denoted by a single dot or full stop symbol, (.) with a line or *Overline*, ($^-$) over the expression to signify the NOT or logical negation of the NAND gate giving us the Boolean expression of: $\overline{A.B} = Q$.

* 2-input Logic NAND Gate

Symbol	ſ	Fruth Tabl	e
	В	А	Q
A Q	0	0	1
	0	1	1
	1	0	1
2-input NAND Gate	1	1	0
Boolean Expression $Q = \overline{A.B}$	Read as A	AND B giv	ves NOT Q

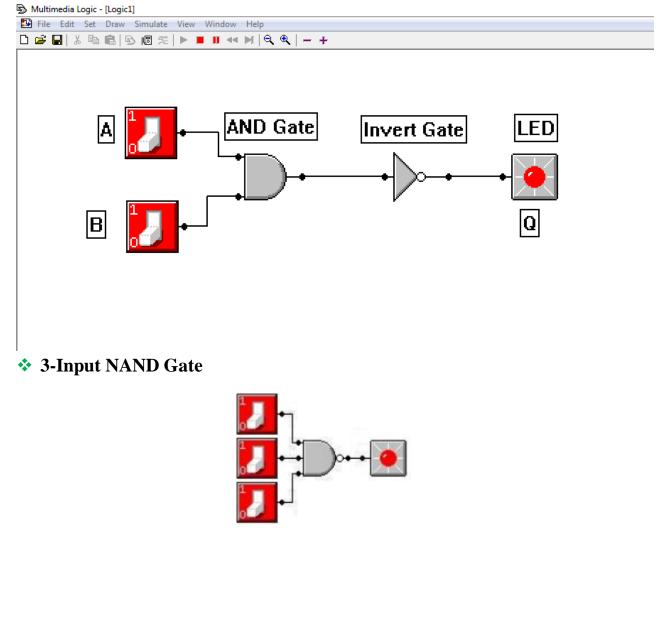
four time intervals; therefore, X is LOW.

3-input Logic NAND Gate

Symbol		Truth	Table	
	С	В	А	Q
	0	0	0	1
	0	0	1	1
	0	1	0	1
3-input NAND Gate	0	1	1	1
	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	0
Boolean Expression $Q = \overline{A.B.C}$	Read as A	AND B A	ND C give	es NOT Q

1.2 Implementation

1. AND gate with check Invert Output (NAND)


And Gate Properties Impute Impute </th
AND Gate Properties Imputs Imputs
B File Edit Set Draw Simulate View Window Help

Truth Table

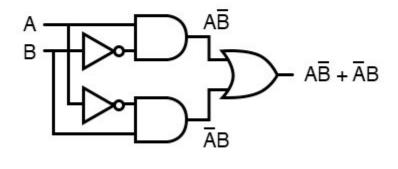
Swi	tches	LED
0	0	Lit / 1
0	1	Lit / 1
1	0	Lit / 1
1	1	Dark / 0

NAND is short for Negative And. This gate combines an And Gate with its output connected through an Inverter Gate in one device. It will output a "0" only if both its inputs are a "1"

2. Use AND + NOT Gate

Truth Table

Swit	ches		LED
0	0	0	Lit / 1
0	0	1	Lit / 1
0	1	0	Lit / 1
0	1	1	Lit / 1
1	0	0	Lit / 1
1	0	1	Lit / 1
1	1	0	Lit / 1
1	1	1	Dark / 0


This gate will output a "0" only if all of its inputs are a "1"

2. The Exclusive-OR Gate (XOR Gate)

The exclusive-OR gate performs modulo-2 addition. Standard symbols for an exclusive OR (X-OR) gate and Boolean expression for the output of a 2-input XOR gate can be written as:

$$Q = \overline{A}B + A\overline{B} = A \oplus B$$

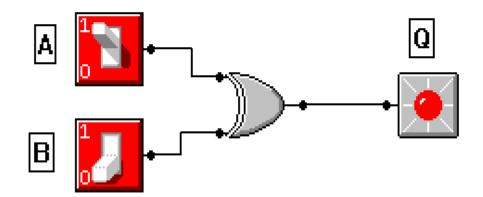
... is equivalent to ...

 $A \oplus B = A\overline{B} + \overline{A}B$

The X-OR gate has only two inputs. The four possible input combinations and the

resulting outputs for an X-OR gate. The operation of an X-OR gate is summarized in the truth table shown

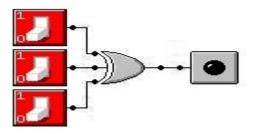
Symbol		Fruth Table	e
	В	А	Q
A a d d d d d d d d d d d d d d d d d d	0	0	0
	0	1	1
	1	0	1
2-input Ex-OR Gate	1	1	0
Boolean Expression $Q = A \oplus B$	A OR B bu	at NOT BO T	FH gives Q
LOW (0) LOW (0)	LOW (0) - HIGH (1) -		HIGH (1)
$HIGH (1) \longrightarrow HIGH (1)$	HIGH (1) -	-	


(Homework)

Giving the Boolean expression of:

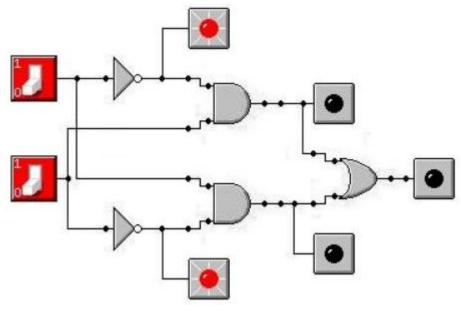
$$Q = \overline{ABC} + AB\overline{C} + A \oplus B \oplus C$$

2.1 Implementation


gic ·	[Logic2]	
Set	Draw Simulate View Window Help	
Þ	Ê S @ ☆ ► ■ II << ▶ < < − +	

Truth Table

Swit	ches	LED
0	0	Dark / 0
0	1	Lit / 1
1	0	Lit / 1
1	1	Dark / 0


3-Input XOR Gate

Switches			LED
0	0	0	Dark / 0
0	0	1	Lit / 1
0	1	0	Lit / 1
0	1	1	Dark / 0
1	0	0	Lit / 1
1	0	1	Dark / 0
1	1	0	Dark / 0
1	1	1	Lit / 1

XOR is short for Exclusive Or. This gate will output a "1" if only one or all of its inputs are a "1"

2.2 XOR Circuit

