Lab 5

First Stage

Cyber Security Science Department

Computer Organization and Logic Design

Lab 5: The Exclusive-NOR Gate

Ву

Asst. Lect. Ali Saleem Haleem

1. The Exclusive-NOR Gate

The Exclusive-NOR gate is equivalent to X-OR gate followed by NOT gate. Standard symbols for an Exclusive-NOR (X-NOR) gate and Boolean expression for the output of a 2-input X-NOR gate can be written as:

$$Q = \overline{A} \,\overline{B} + AB = \overline{A + B}$$

2-input X-NOR Gate

Symbol	Truth Table		
Action	В	А	Q
B • Q 2-input X-NOR Gate	0	0	1
	0	1	0
	1	0	0
	1	1	1
Boolean Expression $Q = \overline{A \oplus B}$	Read if A AND B the SAME		
	gives Q		

3-input XNOR Gate

Symbol	Truth Table			
$\begin{array}{c} A \\ B \\ C \\ \end{array} = 1 \\ Q \\ A \\ C \\ A \\ C \\ C \\ C \\ C \\ C \\ C \\ C$	С	В	А	Q
	0	0	0	1
	0	0	1	0
5-mput ANOK Gate	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1

	1	1	1	0
	Read as "any EVEN number of Inputs"			
Boolean Expression $Q = \overline{A \oplus B \oplus C}$	gives Q			

(Homework)

Giving the Boolean expression of:

$$Q = \overline{ABC} + \overline{A \oplus B \oplus C} + A\overline{B}C$$

2. Implementation

2-input XNOR Gate

🔊 Multimedia Logic - [Logic2]	California - March Paster Anton
🔛 File Edit Set Draw Simulate \	/iew Window Help
🗅 📂 🔚 👗 🛍 💼 🕞 📧 🋫	▶ ■ ■ ◀ ▶ < < - +
XOR Gate Properties	
Inputs 2 Inputs	ОК
	Help
Invert Output (XNOR)	
	· · · · · · · · · · · · · · · · · · ·

Truth Table

Switches		LED	
0	0	Lit / 1	
0	1	Dark / 0	
1	0	Dark / 0	
1	1	Lit / 1	

XNOR is short for **Exclusive Nor**. This gate combines a <u>Xor Gate</u> with its output connected through an <u>Inverter Gate</u> in one device. The output of this gate is a "**0**" only if **one** of its inputs is a "**1**"

Negative Triple of 3-input XNOR Gate

Truth Table

Switches		LED	
0	0	0	Lit / 1
0	0	1	Dark / 0
0	1	0	Dark / 0
0	1	1	Lit / 1
1	0	0	Dark / 0
1	0	1	Lit / 1
1	1	0	Lit / 1
1	1	1	Dark / 0

XNOR is short for **Exclusive Nor**. This gate will output a "0" if only **one** or **all** of

its inputs are a "1"