Al-Mustaqbal University College of Pharmacy General Toxicology 4th stage Lecture: 3

TOXIC RESPONSE OF THE BLOOD

WEAAM J. ABBAS

Hematotoxicology is the study of the adverse effects of exogenous chemicals on blood and blood-forming tissues.

- **✓**Blood or hematopoietic tissue consider as a sensitive target organ for cytoreductive or antimitotic agents because:
- 1. The vital functions that blood cells perform.
- 2. Blood has a high proliferative and regenerative capacity (16 weeks) susceptible to intoxication

The production rate of blood cells is 1-3 million / second in a healthy adult.

This tissue is also susceptible to secondary effects of toxic agents that affect:

- 1. The supply of nutrients such as iron
- 2. The clearance of toxins and metabolites such as <u>urea</u>
- 3. The production of vital growth factors such as erythropoietin.

The consequences of direct or indirect damage to blood

cells may include:

- 1. Hypoxia
- 2. Hemorrhage
- 3. Infection

Toxicology of Erythron

Xenobiotics may affect the:

- 1. Production of erythrocytes
- 2. Function of erythrocytes
- 3. Survival of erythrocytes

Erythrocytosis or anemia

Alterations in Red Cell Production:

Adult Hb(HbA)

1. An imbalance between α - and β -chain production of Hb is the basis of congenital thalassemia syndromes and results in decreased haemoglobin production and microcytosis.

1. Xenobiotics can affect the globin-chain synthesis and alter the composition of haemoglobin within erythrocytes e.g hydroxyurea, which has been found to increase the synthesis of γ -globin chains.

3. Synthesis of heme requires the incorporation of iron into a porphyrin ring.

- ✓ Iron deficiency is usually the result of dietary deficiency or increased blood loss.
- ✓ Any drug that contributes to blood loss, such as NSAIDs, with their increased risk of gastrointestinal ulceration and bleeding, may potentiate the risk of developing iron-deficiency anaemia.

Hb synthesis

- 4. Defects in the synthesis of the porphyrin ring of heme can lead to sideroblastic anaemia, with its characteristic accumulation of iron in bone marrow erythroblasts.
- ✓ Lead can result in such a condition via inhibiting two enzymes in the heme synthesis pathway, aminolevulinic acid dehydratase (ALAD) and ferrochelatase.
- **✓** Others include Ethanol, Chloramphenicol, Isoniazid, Copper chelation/deficiency, Pyrazinamide, and Zinc intoxication.

5. Hematopoiesis requires active DNA synthesis and frequent mitoses.

- **▼Folate** and vitamin B12 are necessary to maintain the synthesis of thymidine for incorporation into DNA.
- ✓ Deficiency of folate and/or vitamin B12 results in megaloblastic anaemia.

- ✓ A number of xenobiotics may contribute to a deficiency of vitamin B12 and/or folate.
- **✓B12** deficiency is caused by Colchicine, Cycloserine, Ethanol, and Isoniazid.
- **✓ Folate deficiency** is caused by Ampicillin, Antimetabolites, Chloramphenicol, and Cholestyramine.

- 6. Many of the antiproliferative drugs used in the treatment of malignancy predictably inhibit hematopoiesis, including erythropoiesis.
- ✓ Although new chemicals, such as amifostine, are being developed that may help protect against the marrow toxicity of these agents.

- 7. Drug-induced aplastic anaemia may represent either a predictable or idiosyncratic reaction to a xenobiotic.
- **✓** This life-threatening disorder is characterized by :
- 1. Peripheral blood pancytopenia
- 2. Reticulocytopenia
- 3. Bone marrow hypoplasia

Pure red cell aplasia

- ✓ Is a syndrome in which the decrease in marrow production is limited to the erythroid lineage.
- **✓** Pure red cell aplasia is an uncommon disorder that may be due to genetic defects, infection, immune-mediated injury, myelodysplasia, drugs or other toxicants.

Pure red cell aplasia

- **✓** The drugs most clearly implicated include:
- 1. Isoniazid
- 2. Phenytoin
- 3. Azathioprine
- **✓**The mechanism of drug-induced pure red cell aplasia is unknown, but some evidence suggests that it may be immunemediated

Megaloblastic Anemia

Xenobiotics Associated with Megaloblastic Anemia

B ₁₂ DEFICIENCY	FOLATE DEFICIENCY
Paraminosalicylic acid	Phenytoin
Colchicine	Primidone
Neomycin	Carbamazepine
Ethanol	Phenobarbital
Omeprazole	Sulfasalazine
Hemodialysis	Cholestyramine
Zidovudine	Triamterine
Fish tapeworm	Malabsorption syndromes
	Antimetabolites

Alterations in the Respiratory Function of Hemoglobin

- **✓ Hemoglobin transports** oxygen and carbon dioxide between the lungs and tissues.
- **✓** The ability of haemoglobin is dependent on:
- 1. Intrinsic (homotropic)
- 2. Extrinsic (heterotropic)

Alterations in the Respiratory Function of Hemoglobin

- 1. Homotropic Effect (Intrinsic)
- **✓** Consistent oxidation of heme iron to the ferric state to form methemoglobin.
- **✓ Methemoglobin** is not capable of binding and transporting oxygen correctly.

Alterations in the Respiratory Function of Hemoglobin

2. Heterotropic Effects (Extrinsic):

There are 3 major heterotropic (extrinsic) effectors of haemoglobin function:

A. A decrease in pH

- ✓ As an example, lactic acid, carbon dioxide lower the affinity of hemoglobin for oxygen; facilitating the delivery of oxygen to tissues
- **✓ Clofibric** acid and bezafibrate are capable of lowering the oxygen affinity of hemoglobin

Alterations in the Respiratory Function of Hemoglobin

B. Erythrocyte 2,3-bisphosphoglycerate (2,3-BPG)concentration decreases the affinity of haemoglobin for oxygen.

- C. Temperature: The oxygen affinity of haemoglobin decrease as the body temperature increases.
- **✓** This facilitates delivery of oxygen to tissues during periods of extreme exercise, and febrile illnesses associated with increased temperature.

Alterations in Erythrocyte Survival

- **√** The normal survival of RBC is about 120 days.
- **✓** Then erythrocytes are removed by the spleen, where the iron is recovered for reutilization in heme synthesis.
- **✓** Red cell destruction leads to anaemia

The acquired hemolytic anemias

The acquired hemolytic anemias are often divided into:

Nonimmune Hemolytic Anemia Immune Hemolytic Anemia

1. Nonimmune Hemolytic Anemia

- **✓** Microangiopathic Anemias: The formation of fibrin strands in the microcirculation is a common mechanism for RBC fragmentation.
- ✓ Mechanical Injuries: The erythrocytes appear to be destroyed by mechanical trauma, major thermal burns are also associated with a hemolytic process.
- **✓ Infectious Diseases:** malaria, babesiosis, clostridial infections
- **✓ Oxidative Hemolysis:** the normal respiratory function of erythrocytes generates oxidative stress on a continuous basis.

1. Nonimmune Hemolytic Anemia

Microangiopathic Anemias:

✓ The formation of fibrin strands in the microcirculation is a common mechanism for RBC fragmentation.

Mechanical Injuries:

✓ The erythrocytes appear to be destroyed by mechanical trauma, major thermal burns are also associated with a hemolytic process.

- ✓ Immunologic destruction of RBC is mediated by the interaction of IgG or IgM antibodies with antigens expressed on the surface of the erythrocyte,
- ✓In the case of autoimmune hemolytic anaemia, the antigens are intrinsic components of the patient's own erythrocytes.

- ✓ A number of mechanisms have been implicated in xenobiotic mediated antibody binding to erythrocytes.
- ✓ Some drugs, of which penicillin is a prototype, appear to bind to the surface of the cell, with the "foreign" drug acting as a hapten and eliciting an immune response.
- **✓** The antibodies that arise in this type of response only bind to drug-coated erythrocytes.

- ✓ Other drugs, of which quinidine is a prototype, bind to components of the erythrocyte surface and induce a conformational change in one or more components of the membrane.
- ✓ A third mechanism, for which α-methyldopa is a prototype, results in the production of a drug-induced autoantibody that cannot be distinguished from the antibodies arising in idiopathic autoimmune hemolytic anaemia.

Type II hypersensitivity

Extrinsic, extravascular

Type III hypersensitivity

Extrinsic, extravascular

Type II hypersensitivity

Extrinsic, extravascular

THANK YOU FOR YOUR ATTENTION