Electrolyte Solutions: Milliequivalents, Millimoles, and Milliosmoles

Lecture:5,6

Learning Objectives

Upon successful completion of this chapter, the student will be able to:

- Calculate the milliequivalent weight from an atomic or formula weight.
- Convert between milligrams and milliequivalents.
- Calculate problems involving milliequivalents.
- Calculate problems involving millimoles and milliosmoles.

Introduction

Electrolytes vs. Non - electrolytes

- Compounds in solution are often referred to as either electrolytes or non –
 electrolytes
- Substances that do not dissociate are called non-electrolytes (urea, dextrose) remain intact
- Those with varying degrees of dissociation are called electrolytes (NaCl)
- Electrolyte ions in blood plasma include cations (Na⁺, K⁺, Ca²⁺, and Mg²⁺) and anions (Cl⁻, HCO₃⁻, HPO₄²⁻, SO₄²⁻)

Introduction

- Electrolytes in human body fluids play an important role in maintaining acidbase balance in body.
- Electrolytes help regulate metabolism in the body and control volume of water in the body.

Pharmaceutical Application

• Electrolyte preparations are employed to treat fluid and electrolyte imbalances in the body.

 Available as oral solutions, syrups, dry granules to be dissolved in water/juice, capsules, tablets and also intravenous infusions.

Milliequivalents

- A chemical unit used by pharmacists, physicians, manufacturers and clinicians across USA to express electrolyte concentration in solution.
- Internationally, molar concentrations (mmol/L or μ mol/L) are employed.
- A mEq measures the chemical activity of an electrolyte in solution
- A mEq represents the total number of ionic charges in solution, and the valence (charge) of the ions.

TABLE 12.1 BLOOD PLASMA ELECTROLYTES IN MILLIEQUIVALENTS PER LITER (mEq/L)

CATIONS	mEq/L	ANIONS	mEq/L
Na+	142	HCO ₃ -	24
K ⁺	5	CI-	105
Ca ⁺⁺	5	HPO ₄	2
Mg ⁺⁺	2	SO ₄	1
		Org. Ac.	6
		Proteinate-	16
	154		154

TABLE 12.2 USUAL REFERENCE RANGE OF BLOOD SERUM VALUES FOR SOME ELECTROLYTES^a

CATION/ANION	mEq/L	SI UNITS (mmol/L)
Sodium	135-145	135-145
Potassium	3.5-5.5	3.5-5.5
Calcium	4.6-5.5	2.3-2.75
Magnesium	1.5-2.5	0.75-1.25
Chloride	96-106	96-106
Carbon Dioxide	24-30	24-30
Phosphorus	2.5-4.5	0.8-1.5

Reference ranges may vary slightly between clinical laboratories based, in part, on the analytical methods and equipment used.

Milliequivalents

• The equivalent is formally defined as the amount of a substancece which will either:

- React with or supply one mole of hydrogen ions in an acid
 base reaction, or
- React with or supply one mole of electrons in a redox reaction

Calculations of Milliequivalents

Equivalent = mass of a given compound / Equivalent weight Equivalent weight = molecular weight / valence

To convert milligrams (mg) to milliequivalents (mEq)

mEq = (mg x valence) / molecular weight

To convert mEq/mL to mg/mL

 $mg/mL = (mEq/ml \times molecular \text{ weight}) / valence$

CALCULATIONS CAPSULE

Milliequivalents

To convert milligrams (mg) to milliequivalents (mEq):

To convert milliequivalents (mEq) to milligrams (mg):

To convert milliequivalents per milliliter (mEq/mL) to milligrams per milliliter (mg/mL):

TABLE 12.3 VALUES FOR SOME IMPORTANT IONS

	ATOMIC OR					
ION	FORMULA	VALENCE	FORMULA WEIGHT	EQUIVALENT WEIGHT		
Aluminum	Al***	3	27	9		
Ammonium	NH4	1	18	18		
Calcium	Ca ⁺⁺	2	40	20		
Ferric	Fe ⁺⁺⁺	3	56	18.7		
Ferrous	Fe ⁺⁺	2	56	28		
Lithium	Li ⁺	1	7	7		
Magnesium	Mg ⁺⁺	2	24	12		
Potassium	K ⁺	1	39	39		
Sodium	Na ⁺	1	23	23		
Acetate	C ₂ H ₃ O ₂	1	59	59		
Bicarbonate	HCO₃¯	1	61	61		
Carbonate	CO3 -	2	60	30		
Chloride	CI-	1	35.5	35.5		
Citrate	C6H5O7	3	189	63		
Gluconate	C6H11O7	1	195	195		
Lactate	C ₃ H ₅ O ₃	1	89	89		
Phosphate	H ₂ PO ₄	1	97	97		
	HPO4 -	2	96	48		
Sulfate	504	2	96	48		

^a Equivalent weight = Atomic or formula weight
Valence

Example Calculations of Milliequivalents

• What is the concentration, in milligrams per milliliter, of a solution containing 2 mEq of potassium chloride (KCl) per milliliter?

Molecular weight of KCl = 74.5

$$mg/mL = (mEq/mL \times molecular \text{ weight}) / \text{ valence}$$

= 2 x 74.5 = 149 mg/mL, answer.

• What is the concentration, in grams per milliliter, of a solution containing 4 mEq of calcium chloride (CaCl2·2H2O) per milliliter?

Formula weight of $CaCl2 \cdot 2H2O = 147$

mg/mL = (mEq/mL x molecular weight) / valence

= 4 x 147 / 2 = 294 mg/ml = 0.294 g/ml answer • What is the percent (w/v) concentration of a solution containing 100 mEq of ammonium chloride per liter?

Molecular weight of NH4Cl = 53.5 100 mEq / 1000ml = x mEq /1ml x= 0.1 mEq / ml mg/mL = (mEq/mL x molecular weight) / valence = 0.1 x 53.5 /1 = 5.35 mg / ml = 0.00535 g/ml = 0.535 % answer.

• A solution contains 10 mg/100 mL of K ions. Express this concentration in terms of milliequivalents per liter?

Atomic weight of K = 39

10 mg / 100 ml = x mg /1ml

x = 0.1 mg / ml

mg/mL = (mEq/mL x molecular weight) / valence

0.1 = (mEq/ ml x 39) / 1

mEq / ml = 0.00256 = 2.564 mEq / L

• A solution contains 10 mg/100 mL of Ca ions. Express this concentration in terms ofmilliequivalents per liter?

Atomic weight of Ca 40
Equivalent weight of Ca 40 / 2 = 20

mEq/L = (mg / L x valance) / atomic weight

= (100 mg / ml x 2) / 40

= 5 mEq/L answer.

• A magnesium (Mg) level in blood plasma is determined to be 2.5 mEq/L Express this concentration in terms of milligrams?

Atomic weight of Mg 24Equivalent weight of Mg 24/2 = 12

mg / L = $(mEq / L \times molecular \times weight) / valence$ = $(2.5 \times 24) / 2$ = 30 mg / L answer. • How many milliequivalents of potassium chloride are represented in a 15 mL dose of a 10% (w/v) potassium chloride elixir?

```
Molecular weight of KCl = 74.5

Equivalent weight of KCl = 74.5

10 \text{ g} / 100 \text{ ml} = x / 15 \text{ ml}

x = 1.5 \text{ g} = 1500 \text{ mg}

mg = (mEq x molecular weight) / valence

mEq = (1500 \text{ x} 1) / 74.5 = 20.13 \text{ mEq} answer.
```

• How many milliequivalents of magnesium sulfate are represented in 1 g of anhydrous magnesium sulfate (MgSO4)?

Molecular weight of MgSO4 = 120 Equivalent weight of MgSO4 = 60

```
mg = ( mEq x molecular weight) / valence
1000 mg = ( mEq x 120 ) / 2
mEq = 2000 / 120 = 16.67 mEq answer.
```

• How many milliequivalents of Na would be contained in a <u>30 mL</u> dose of the following solution?

1- For Disodium hydrogen phosphate: Formula Na2HPO4.7H2O

Molecular weight = 268 and the equivalent weight =134 18/100 = x / 30 x = 5.4 g = 5400 mg **mEq = (mg x valance) / molecular weight** = $(5400 \times 2) / 268 = 40.29$ mEq

2- For Sodium biphosphate: Formula NaH2PO4.H2O

Molecular weight = 138 and the equivalent weight = 138 48/100 = x/30 x = 14.4 g = 14400 mg

mEq = (mg x valance) / molecular weight = (14400 x 1) / 138 = 104.35 mEq

40.29 + **104.35** = **144.64 mEq** of Na would be contained in a **30 mL** dose of the solution

• A person is to receive 2 mEq of sodium chloride per kilogram of body weight. If the person weighs 132 lb., how many milliliters of a 0.9% sterile solution of sodium chloride should be administered?

Molecular weight of NaCl = 58.5 Equivalent weight of NaCl = 58.5

• 1 kg = 2.2 lb. Weight of person in kg = 132 lb / 2.2 lb = 60 kg

 $mg = (mEq \ x \ molecular \ weight) / valence$ = $(2 \times 58.5) / 1 = 117 \ mg$ to be received per kg body wight $117 \times 60 = 7020 \ mg = 7.02 \ g$ to be received for this person

0.9 g 100 ml x = 780 ml answer.

To be Continued with Millimoles and Micromoles Next Lecture

Thank you

Millimoles and Micromoles

- A mole is the molecular weight of substance in grams.
- A millimole one thousandth of a mole
- A micromole One millionth of a mole
- SI expresses, electrolyte conc. in mmol/L
- For monovalent species, the numeric values of the mEq and mmol are identical

Osmolarity

- Osmotic pressure is important to biologic processes that involve the diffusion of solutes and the transfer of fluids through semipermeable membranes
- Osmotic pressure is proportional to the total number of particles in a solution
- Unit of measurement is milliosmoles (mOsmol)

Osmolarity

- For non-electrolytes like dextrose, 1 mmol represents 1 mosmol
- However for electrolytes, the total number of particles in solution depends on the degree of dissociation of a substance.
- E.g. Assuming complete dissociation, 1 mmolNaCl represents 2 mOsmol (Na⁺ + Cl⁻) of total particles
- 1 mmol of CaCl₂ represents 3 mOsmol (Ca²⁺ + 2Cl⁻)
- 1 mmol of sodium citrate $(Na_3C_6H_5O_7)$ represents 4 mOsmol $(3 Na^+ + C_6H_5O_7)$ of total particles

- The milliosmolar value of the complete solution is equal to the sum of milliosmolar values of individual ions.
- U.S. Pharmacopeia lists the following formula for calculation of ideal osmolar concentration:

- Wt. of substance (g/L)
- mOsmol/L = ----- × No. of Species × 1000
- Mol. Wt (g/mol)

Osmolarity vs. Osmolality

- Osmolarity -- "Milliosmoles of solute per liter of solution"
- Osmolality "Milliosmoles of solute per kilogram of solvent"
- For dilute aqueous solutions both terms are nearly identical
- For more concentrated solutions the two values are not identical
- Pharmacist should make distinction between Osmolarity and Osmolality

