

College of Health and Medical Technologies **Department of Radiology Technologies** Radiobiology The first stage Dr. Arshed AL-kafagi

Target theory

Lec No.5

Radiation target theory refers to that ionizing radiation hits specific molecules or organelles in cells, resulting in **structural damage**, **gene mutation**, **chromosome breakage** and other target effects of biological macromolecules.

Based on the target theory, **DNA** was initially regarded as a main radiation target

It assumes that there are certain critical molecules or critical targets within cells that need to be hit or inactivated by the **radiation** to kill the cell.

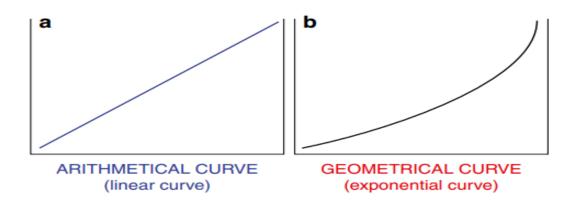
Single target—single hit: Here, there is only **one target** in the cell that is associated with **cell death**, and **a single hit** on this target is adequate to inactivate the target.

• This is a valid assumption for viruses and some bacteria.

Multiple target–single hit: Here, there is more than one target per cell, and a single hit of any of these targets is required for cell death.

Not all targets are hit; some of them are killed, while others are damaged by low doses. This type of damage is called sub lethal damage (SLD).

Cells with **SLD** may repair themselves during inter-fractional periods. This is a valid assumption for **mammalian cells**.


Cell Survival Curves

The number of cells in cell lines within cell cultures can increase in one of two ways: either **arithmetically** or **exponentially** (**geometrically**).

Arithmetically: The number of cells **increases** linearly (by a constant number) with each generation in an **arithmetic** increase.

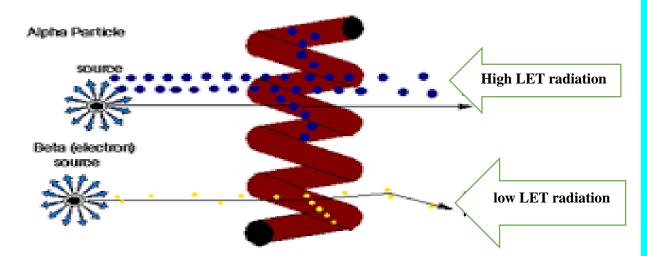
In an **exponential increase**, the number of cells **doubles** with each generation.

So exponential growth is faster than arithmetic growth.

Surviving fraction (SF): The cells are not affected by the radiation Curves showing the relation between the radiation dose and SF are termed cell survival curves.

Cell cycle effects

When cell culture lines are exposed to radiation:


- \diamond some of them **lose** their capacity to divide and cannot form colonies (\rightarrow reproductive cell death).
- some only divide to a **small** degree and form small **colonies**.
- some divide **slowly** and form colonies over **longer periods**.
- some lose their capacity to divide but continue to grow and become **giant** cells, while still others degenerate and die.
- ❖ The remaining cells are not affected by the radiation, and they represent the surviving fraction (SF) after irradiation of the cell culture (\rightarrow SF).

Radiation effect modification

1.Linear Energy Transfer (LET)

❖ The **LET** increases as the charge on the ionizing radiation **increases** and its velocity **decreases**.

- **❖** Lethal effects **increase** as the **LET increases**.
- ❖ Since **high LET** radiation (particulate radiation) transfers more energy per unit length of material, the probability of causing **DNA** damage in a short period of time is **high**.

2. Absorbed dose

The basic quantity of **radiation** measurement in radiotherapy is the "**absorbed dose.**" This term defines the amount of energy absorbed from a **radiation** beam per unit mass of absorbent material.

3. Dose Rate

- ❖ Cell survival is **greater** for a delivered radiation dose if the **dose rate** is **decreased**. This is due to the proliferation of undamaged living cells and SLD repair during **radiotherapy**.
- ❖ This effect is very important in brachytherapy applications. The **dose rate** in external therapy is **100** cGy/min.
- **Low dose** rates are used in brachytherapy, and **high doses** can be given due to normal tissue repair and repopulation.

4. Cell cycle.

- ❖ The responses of cells in different phases to radiation vary.
- ❖ The most **radiosensitive** cell phases are **late G2** and **M**.
- ❖ The most radio-resistant cell phases are late S and G1.

5. Repair of sub-lethal damage (SLDR) .

- ❖ SLD is usually repaired 2–6 h after the delivery of radiation.
- **SLD** is not fatal, but the second dose **increases** radio sensitivity.
- ❖ It can be lethal if there is an insufficient repair period between two fractions.

- ❖ Repair abilities differ among normal tissues and **tumors**.
- ❖ Inhibition of **SLDR** is the rationale for the additive effect of chemoradiotherapy.

6. Repair of potentially lethal damage (PLDR)

- Some damage that is lethal during normal growth can be repaired under suboptimal conditions.
- ❖ The first human **DNA** repair gene to be discovered is located in the **18th** chromosome.
- ❖ Mitomycin C, which selectively affects hypoxic tumor cells, acts through this gene and inhibits PLDR.

7.Oxygenation.

- Soluble oxygen in tissues increases the stability and toxicity of free radicals.
- ❖ The **increase** in the effect of radiation after **oxygenation** is defined as the oxygen enhancement ratio (**OER**).
- ❖ The maximum value of the **OER** is **3**.
- ❖ Oxygenation can modify the indirect effect of free radicals.

8.Temperature.

- ❖ Most cells are more sensitive to radiation at **high** temperatures.
- ❖ However, there are more chromosome aberrations at low temperatures (probably due to the suppression of the DNA repair process at low temperatures).

9. Chemical agents

* Radio protective agents : Free radical scavengers are radio protective agents.

* Radio sensitizers . Oxygen is the leading radiosensitizer.