Carbohydrate chain Protein molecule Outside cell Protein: molecule Lipids (bilayer) Protein channel inside celj

Transport

Movement across the Cell Membrane

Lipids of cell membrane

- Membrane consists primarily of <u>phospholipids</u>
 - phospholipid bilayer

The Fluidity of Membranes

- Phospholipids in the membrane are
- fluid like (can move easily)

(a) Movement of phospholipids

Semi-permeable membrane

- Will allow passage through the membrane
- But need to control what gets in or out
 - ◆ membrane is <u>semi-permeable</u>

So how does a semipermeable membrane work?

Phospholipid bilayer

What molecules can get through directly?

Small lipids can slip directly through the phospholipid cell membrane.

Getting through cell membrane

- Diffusion
 - Movement of molecules from a high concentration to a low concentration until it's equal
- Facilitated Diffusion
 - transport of larger molecules
 - through a protein channel
 - Movement from high → low
- Active transport
 - Movement from low → high
 - uses a protein channel (pump)
 - requires ATP energy

Diffusion (passive transport)

■ movement from <u>high</u> → <u>low</u> concentration

Diffusion of two solutes (passive)

 Each substance diffuses down its <u>own</u> concentration gradient, independent of concentration gradients of other substances

Osmosis, the diffusion of water

- Water goes from HIGH to LOW concentration
 - "passive transport"
 - no energy needed (does not require ATP)

diffusion

osmosis

Simple diffusion across membrane

Facilitated Diffusion through a Channel

Movement from high to low

Semi-permeable cell membrane

- But the cell still needs control
 - membrane needs to be <u>semi-permeable</u>
 - specific channels allow specific material in & out

Active Transport (needs ATP energy)

- Membrane proteins act as a <u>PUMP</u> for specific molecules
 - Uses ATP –energy
 - Proteins act as pumps and channels

Active transport can move materials from low to high concentration

- Cells may need molecules to move
- against concentration situation
 - protein pump
 - requires energy
 - ATP for NRG

Na+/K+ pump in nerve cell

membranes

Transport summary

How about large molecules?

- Moving large molecules into & out of cell through <u>vesicles & vacuoles</u>
 - Endocytosis (moving into cell)
 - phagocytosis = <u>"cellular eating"</u>
 - pinocytosis = <u>"cellular drinking"</u>
 - receptor-mediated endocytosis
 - Exocytosis (moving out)

Endocytosis

phagocytosis

fuse with lysosome for digestion

pinocytosis

non-specific process

receptor-mediated endocytosis

triggered by chemical signal

More than just a barrier....

- Expanding our view of cell membrane beyond just a phospholipid bilayer barrier
 - phospholipids plus...

A membrane is a collage of different proteins embedded in the fluid matrix of the lipid bilayer

Membrane Proteins

- Proteins determine most of membrane's specific functions
 - cell membrane & organelle membranes each have unique collections of proteins
- Membrane proteins:
 - peripheral proteins = loosely bound to surface of membrane
 - <u>integral proteins</u> = penetrate into lipid bilayer, often completely spanning the membrane = <u>transmembrane</u> protein

Membrane Carbohydrates

- Play a key role in cell-cell recognition
 - ability of a cell to distinguish neighboring cells from another
 - important in organ & tissue development
 - basis for rejection of foreign cells by immune system

Any Questions?

Fluid Mosaic Model

