TCA Cycle

History

Discovered by Hans Krebs in 1937

He received the Nobel Prize in physiology or medicine in 1953 for his discovery

- Most of cells energy comes from oxidation of A.CoA in mitochondria
- Glycolysis oxidizes sugar to pyruvate which is converted to A.CoA in mitochondria
- Proteins and fatty acid are also broken down to yield A.CoA
- Acetyl units oxidized to CO2 in mitochondrial matrix by TCA cycle
- Energy released during oxidation captured by NAD+ and FAD
- > Carried to ETC for synthesis of ATP (oxidative phosphorylation)

RXN 10 Glycolysis

Pyruvate produced from glycolysis must be decarboxylated to A. CoA before it enters TCA cycle

Catalyzed by large enzyme
-Pyruvate dehydrogenase complex
(mitochondrial matrix)

Pyruvate + CoA + NAD^+ \longrightarrow A. CoA + CO_2 + NADH + H^+

Control of the Pyruvate Dehydrogenase complex

Regulation by its products

> NADH & Acetyl-CoA: inhibit

W hile

>NAD+ & CoA stimulate

· Regulation by energy charge

> ATP : inhibit W hile

> AMP: stimulate

Overall rxn

 Acetyl CoA + 3NAD+ + FAD + GDP + Pi + 2H₂O

 2CO₂ + CoA + 3NADH + FADH₂ + GTP + H⁺

Regulation of Citric Acid Cycle

3 Control sites

Regulation of Citric Acid Cycle con't Site 1 - rxn 1

Acetyl CoA + Oxaloacetate

Citrate

- Enzyme: citrate synthase
- · Inhibited by ATP

Regulation of Citric Acid Cycle con't Site 2 - rxn 3

bocitrate ∞ Xetoglutarate

- Enzyme: isocitrate dehydrogenase
- Inhibited by ATP & NADH
- S timulated by ADP & NAD+

Regulation of Citric Acid Cycle con't Site 3 - rxn 4

α-Ketoglutarate Sussinyl CoA

- Enzyme: α -Ketoglutarate dehydrogenase
- Similar to PDH complex
- Inhibited by Succinyl CoA & NADH also high-energy charge.

Regulation of Citric Acid Cycle Summary

N GENERAL THE TCA CYCLE IS
 NH IB ITED BY A H IGH ENERGY
 CHARGE AND STIMULATED BY LOW
 ENERGY CHARGE

Overview

- · Glycolysis produces pyruvate by oxidation of glucose
- The pyruvate is than oxidized to A.CoA in the mitochondria
- The acetly units are oxidized to CO2 by TCA cycle in the mitochondrial matrix
- Energy released during both the oxidation rxns are collected by NAD+ and FAD
- So NADH and FADH 2 carry energy in the form of electrons

Where do all the NADH's and FADH2's Go

