Lab 5

First Stage

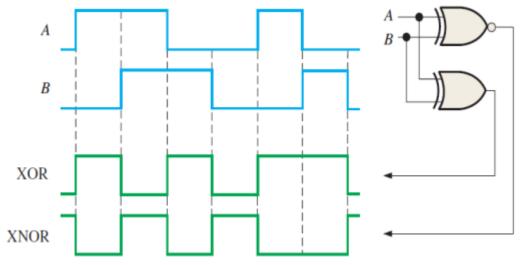
Intelligent Medical Systems Department

Logic Design

Lab 5: The Exclusive-NOR Gate

By

Asst. Lect. Ali Saleem Haleem

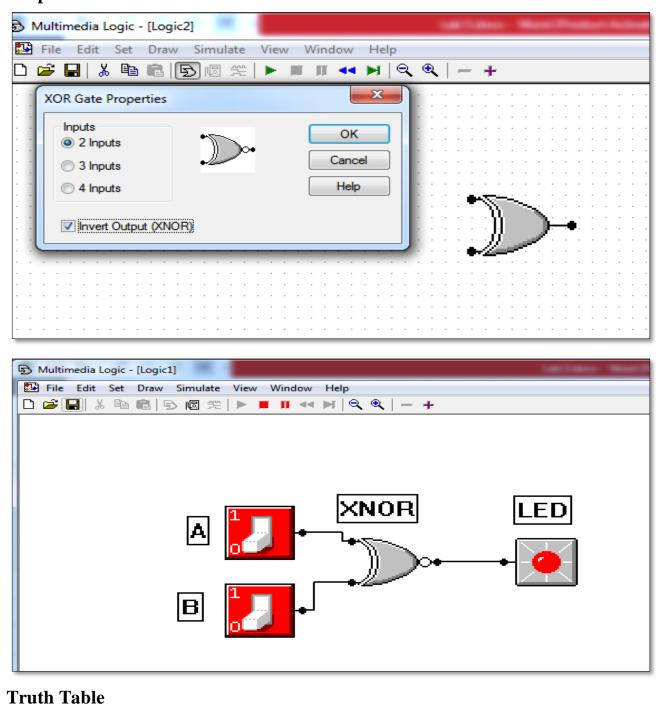

1. The Exclusive-NOR Gate

The Exclusive-NOR gate is equivalent to X-OR gate followed by NOT gate. Standard symbols for an Exclusive-NOR (X-NOR) gate and Boolean expression for the output of a 2-input X-NOR gate can be written as:

$$Q = \overline{A} \,\overline{B} + AB = \overline{A + B}$$

2-input X-NOR Gate

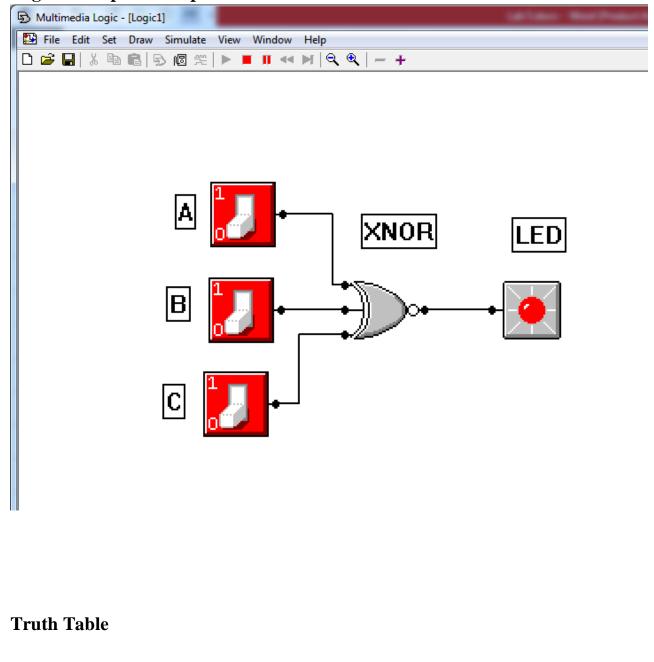
Symbol	Truth Ta	ble	
A	В	А	Q
	0	0	1
2-input X-NOR Gate	0	1	0
2-input A-NOK Gate	1	0	0
	1	1	1
Boolean Expression $Q = \overline{A \oplus B}$	Read if A AND B the SAME		e SAME
	gives Q		


3-input XNOR Gate

Symbol	Truth	Truth Table		
A o H - 1	С	В	A	Q
	0	0	0	1
3-input XNOR Gate	0	0	1	0
5-mput ANON Gate	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1

	1	1	1	0
	Read as "any EVEN number of Inputs"			
Boolean Expression $Q = \overline{A \oplus B \oplus C}$	gives Q			

Giving the Boolean expression of: $Q = \overline{ABC} + AB\overline{C} + A\overline{B}C + \overline{ABC}$


2. Implementation 2-input XNOR Gate

Switches		LED	
0	0	Lit / 1	
0	1	Dark / 0	
1	0	Dark / 0	
1	1	Lit / 1	

XNOR is short for **Exclusive Nor**. This gate combines a <u>Xor Gate</u> with its output connected through an <u>Inverter Gate</u> in one device. The output of this gate is a "0" only if **one** of its inputs is a "1"

Negative Triple of 3-input XNOR Gate

Swi	Switches		LED	
0	0	0	Lit / 1	
0	0	1	Dark / 0	
0	1	0	Dark / 0	
0	1	1	Lit / 1	
1	0	0	Dark / 0	
1	0	1	Lit / 1	
1	1	0	Lit / 1	
1	1	1	Dark / 0	

XNOR is short for **Exclusive Nor**. This gate will output a "0" if only **one** or **all** of its inputs are a "1"