<u>Chapter 4</u>

Temperature

- Temperature is a measure of the energy (mostly kinetic) of the molecules in a system. This definition tells us about the amount of energy.
- * Other scientists prefer to say that **<u>Temperature</u>** is a property of the state of thermal

equilibrium of the system with respect to other systems because temperature tells us about the capability of a system to transfer energy (as heat).

Four types of temperature:

Two based on a relative scale, degrees Fahrenheit (°F) and Celsius (°C), and two based on an

absolute scale, degree Rankine (°R) and Kelvin (K).

Temperature Conversion

 $\Delta^{\circ} \mathbf{F} = \Delta^{\circ} \mathbf{R}$ $\Delta^{\circ} \mathbf{C} = \Delta \mathbf{K}$

Also, the Δ° C is larger than the Δ° F

$$\frac{\Delta^{\circ}C}{\Delta^{\circ}F} = 1.8 \quad \text{or} \quad \Delta^{\circ}C = 1.8 \ \Delta^{\circ}F$$
$$\frac{\Delta K}{\Delta^{\circ}R} = 1.8 \quad \text{or} \quad \Delta K = 1.8 \ \Delta^{\circ}R$$

Also, because of the temperature difference between boiling water and ice (Celsius: 100° C $- 0^{\circ}$ C $= 100^{\circ}$ C; Fahrenheit: 212° F $- 32^{\circ}$ F $= 180^{\circ}$ F), the following relationships hold:

 $\Delta^{\circ}C = 1.8000 \ \Delta^{\circ}F$ and $\Delta K = 1.8000 \ \Delta^{\circ}F$

The proper meaning of the symbols °C, °F, K, and °R, as either the temperature or the unit temperature difference, must be interpreted from the context of the equation or sentence being examined.

Suppose you have the relation:

$$T_{\circ_{\mathbf{F}}} = a + bT_{\circ_{\mathbf{C}}}$$

What are the units of **a** and **b**? The units of **a** must be °F for consistency. The correct units for **b** must involve the conversion factor (1.8 Δ °F\ Δ °C), the factor that converts the size of an interval on one temperature scale

$$T_{\circ F} = a_{\circ F} + \left(\frac{1.8 \ \Delta^{\circ} F}{\underbrace{\Delta^{\circ} C}{b}}\right) T_{\circ C}$$

Unfortunately, the units for b are usually ignored; just the value of b (1.8) is employed.

 $T_{^{\circ}F} = 1.8 T_{^{\circ}C} + 32$

★ The relations between °C, °F, K, and °R are:

$$T_{\circ R} = T_{\circ F} \left(\frac{1 \ \Delta^{\circ} R}{1 \ \Delta^{\circ} F} \right) + 460^{\circ} R \qquad \underline{Or} \qquad \overline{\mathbf{T}_{\circ R} = \mathbf{T}_{\circ F} + 460}$$
$$T_{K} = T_{\circ C} \left(\frac{1 \ \Delta K}{1 \ \Delta^{\circ} C} \right) + 273 \ K$$
$$T_{\circ F} - 32^{\circ} F = T_{\circ C} \left(\frac{1.8 \ \Delta^{\circ} F}{1 \ \Delta^{\circ} C} \right)$$
$$T_{\circ C} = (T_{\circ F} - 32^{\circ} F) \left(\frac{1 \ \Delta^{\circ} C}{1.8 \ \Delta^{\circ} F} \right) \qquad \underline{Or} \qquad \overline{\mathbf{T}_{K} = \mathbf{T}_{\circ C} + 273}$$

<u>Or</u>

Example 4.1

Convert 100 °C to (a) K, (b) °F, and (c) °R.

Solution

(a)
$$(100 + 273)^{\circ}C \frac{1 \Delta K}{1 \Delta^{\circ}C} = 373 \text{ K}$$

or with suppression of the Δ symbol,

$$(100 + 273)^{\circ}C \frac{1 K}{1^{\circ}C} = 373 K$$

(b)
$$(100^{\circ}C)\frac{1.8 \ \Delta^{\circ}F}{1 \ \Delta^{\circ}C} + 32^{\circ}F = 212^{\circ}F$$

(c) $(212 + 460)^{\circ}F\frac{1 \ \Delta^{\circ}R}{1 \ \Delta^{\circ}F} = 672^{\circ}R$

or

$$(373 \text{ K}) \frac{1.8 \ \Delta^{\circ} \text{R}}{1 \ \Delta \text{K}} = 672^{\circ} \text{R}$$

Example 4.2

The heat capacity of sulfuric acid has the units J/(g mol)(°C), and is given by the relation Heat capacity = $139.1 + 1.56 * 10^{-1}$ T

where T is expressed in °C. Modify the formula so that the resulting expression has the associated units of Btu/(lb mol) (°R) and T is in °R.

Solution

 $T_{\circ F} = 1.8 T_{\circ C} + 32 \implies T_{\circ C} = (T_{\circ F} - 32)/1.8$ $T_{\circ R} = T_{\circ F} + 460 \implies T_{\circ F} = T_{\circ R} - 460$

 \therefore T_{°C} = [T_{°R} - 460 - 32]/1.8

heat capacity =
$$\left\{ 139.1 + 1.56 \times 10^{-1} \left[(T_{\circ R} - 460 - 32) \frac{1}{1.8} \right] \right\} \times \frac{1 \text{ J}}{(\text{g mol})(^{\circ}\text{C})} \left| \frac{1 \text{ Btu}}{1055 \text{ J}} \left| \frac{454 \text{ g mol}}{1 \text{ lb mol}} \right| \frac{1^{\circ}\text{C}}{1.8^{\circ}\text{R}} \right]$$

 $= 23.06 + 2.07 \times 10^{-2} T_{\circ R}$

Note the suppression of the Δ symbol in the conversion between °C and °R.

Problems

1. Complete the following table with the proper equivalent temperatures:

°C	°F	K	°R
-40			
	77.0		
		698	
			69.8

2. The heat capacity of sulfur is $C_p = 15.2 + 2.68T$, where C_p is in J/(g mol)(K) and T is in K. Convert this expression so that C_p is in cal/(g mol)(°F) with T in °F.

Answers:

°C	°F	К	°R
-40.0	-40.0	233	420
25.0	77.0	298	537
425	796	698	1256
-234	-390	38.8	69.8

2. $C_p = 93.2 + 0.186 T_{^{\circ}F}$

Supplementary Problems (Chapter Four):

Problem 1 Complete the table below with the proper equivalent temperatures.					
°C	°F	K	°R		
- 40.0	77.0	698	 69.8		
			07.0		

Solution

The conversion relations to use are:

is to use are.	°F K °R °R	= = =	1.8 ° C ° C ° F 1.8 K	+ + +	32 273 460
°C	°F		К		°R
- 40.0 25.0 425 - 235	- 40.0 77.0 797 -390		233 298 698 38.4		420 437 1257 69.8

Problem 2

The specific heat capacity of toluene is given by following equation

 $C_p = 20.869 + 5.293 \times 10^{-2} T \qquad \text{where } C_p \text{ is in Btu/(LB mol) (° F)} \\ \text{Express the equation in cal/(g mol) (K) with T in K.}$

Solution

First, conversion of the units for the overall equation is required.

$$C_{p} = \frac{[20.869 + 5.293 \times 10^{-2} (T_{\circ F})] \text{ Btu}}{1 (\text{lb mol}) (^{\circ}\text{F})} \frac{252 \text{ cal}}{1 \text{ Btu}} \frac{1 \text{ lb mol}}{454 \text{ g mol}} \frac{1.8 \text{ }^{\circ}\text{F}}{1 \text{ K}}$$
$$= [20.869 + 5.293 \times 10^{-2} (T_{\circ F})] \frac{\text{cal}}{(\text{g mol}) (\text{K})}$$

Note that the coefficients of the equation remain unchanged in the new units for this particular conversion. The T of the equation is still in °F, and must be converted to kelvin.

$$T_{\circ F} = (T_{K} - 273) 1.8 + 32$$

$$C_{p} = 20.69 + 5.293 \times 10^{-2} [(T_{K} - 273) 1.8 + 32]$$
wing $C_{p} = 3.447 + 9.527 \times 10^{-2} T_{er}$

Simplifying C_p = -3.447 + 9.527 \times 10⁻² $T_{\rm K}$