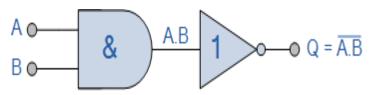
Lab 4
First Stage
Intelligent Medical Systems Department

Logic Design

Lab 4: NAND and XOR Gates

By

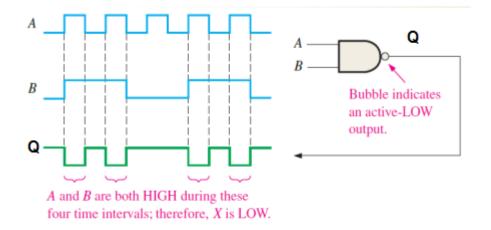

Asst. Lect. Ali Saleem Haleem

NAND and XOR Gates

1. NAND Gate

- ❖ The NAND gate is a popular logic element because it can be used as a universal gate; that is, NAND gates can be used in combination to perform the AND, OR, and inverter operations.
- ❖ The NAND gate is equivalent to an AND gate followed by NOT gate
- ❖ Boolean Expression Q = A B

1.1 Logic NAND Gate Equivalence

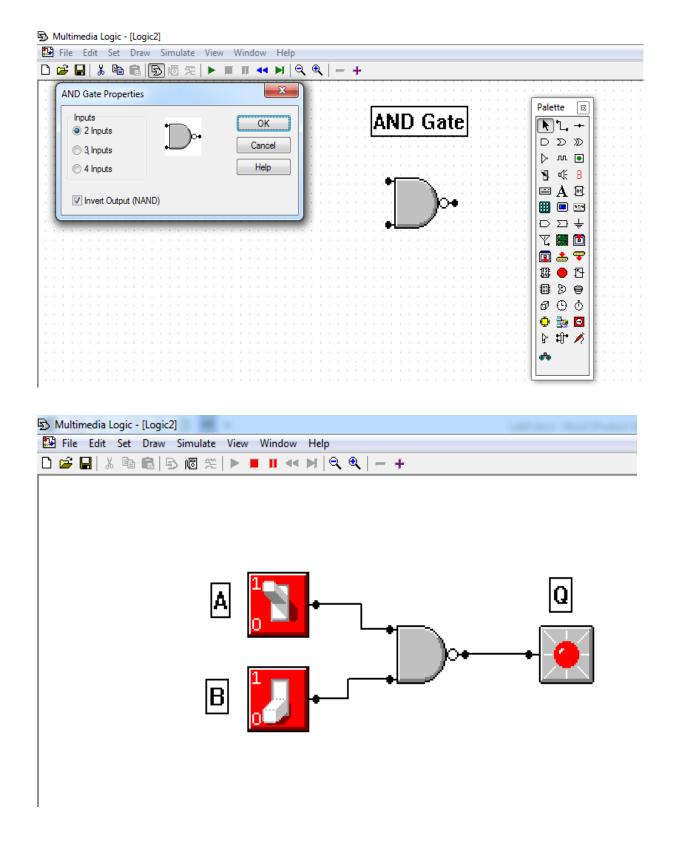


2-input "AND" gate plus a "NOT" gate

The logic or Boolean expression given for a logic NAND gate is that for *Logical Addition*, which is the opposite to the AND gate, and which it performs on the *complements* of the inputs. The Boolean expression for a logic NAND gate is denoted by a single dot or full stop symbol, (.) with a line or *Overline*, ($\overline{}$) over the expression to signify the NOT or logical negation of the NAND gate giving us the Boolean expression of: $\overline{A.B} = Q$.

***** 2-input Logic NAND Gate

Symbol	ŗ	Fruth Tabl	e
	В	A	Q
A O Q	0	0	1
	0	1	1
	1	0	1
2-input NAND Gate	1	1	0
Boolean Expression $Q = \overline{A.B}$	Read as A	AND B giv	es NOT Q

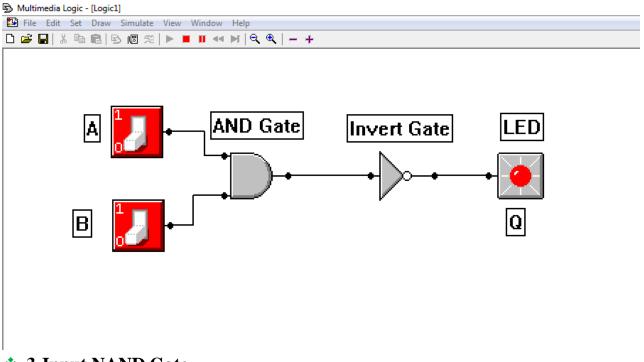


3-input Logic NAND Gate

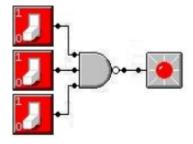
Symbol		Truth	Table	
	С	В	A	Q
A	0	0	0	1
B 0 0 Q	0	0	1	1
c	0	1	0	1
	0	1	1	1
3-input NAND Gate	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	0
Boolean Expression $Q = \overline{A.B.C}$	Read as A	AND B A	ND C give	es NOT Q

1.2 Implementation

1. AND gate with check Invert Output (NAND)



Truth Table


Switches		LED
0	0	Lit / 1
0	1	Lit / 1
1	0	Lit / 1
1	1	Dark / 0

NAND is short for Negative And. This gate combines an And Gate with its output connected through an Inverter Gate in one device. It will output a "0" only if both its inputs are a "1"

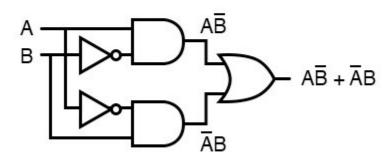
2. Use AND + NOT Gate

3-Input NAND Gate

Truth Table

Switches		LED	
0	0	0	Lit / 1
0	0	1	Lit / 1
0	1	0	Lit / 1
0	1	1	Lit / 1
1	0	0	Lit / 1
1	0	1	Lit / 1
1	1	0	Lit / 1
1	1	1	Dark / 0

This gate will output a "0" only if all of its inputs are a "1"


2. The Exclusive-OR Gate (XOR Gate)

The exclusive-OR gate performs modulo-2 addition. Standard symbols for an exclusive OR (X-OR) gate and Boolean expression for the output of a 2-input XOR gate can be written as:

$$Q = \overline{A}B + A\overline{B} = A \oplus B$$

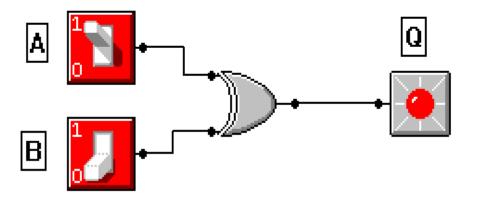
$$A \oplus B$$

... is equivalent to ...

$$A \oplus B = A\overline{B} + \overline{A}B$$

The X-OR gate has only two inputs. The four possible input combinations and the

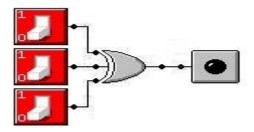
resulting outputs for an X-OR gate. The operation of an X-OR gate is summarized in the truth table shown


2-input XOR Gate

Symbol	,	Fruth Table	e
	В	A	Q
A • Q B • Q	0	0	0
	0	1	1
	1	0	1
2-input Ex-OR Gate	1	1	0
Boolean Expression $Q = A \oplus B$	A OR B bu	it NOT BO 7	TH gives Q

$$\begin{array}{c|c} HIGH (1) & & & HIGH (1) \\ LOW (0) & & & HIGH (1) & & \\ \end{array}$$

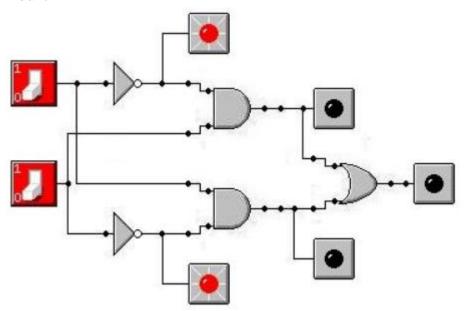
2.1 Implementation



Truth Table

Switches		LED
0	0	Dark / 0
0	1	Lit / 1
1	0	Lit / 1
1	1	Dark / 0

3-Input XOR Gate



Switches		ies	LED
0	0	0	Dark / 0
0	0	1	Lit / 1

0	1	0	Lit / 1
0	1	1	Dark / 0
1	0	0	Lit / 1
1	0	1	Dark / 0
1	1	0	Dark / 0
1	1	1	Lit / 1

XOR is short for Exclusive Or. This gate will output a "1" if only one or all of its inputs are a "1"

2.2 XOR Circuit

