

$$I = \int x \, \cos(x) \, dx$$

$$u = x$$

$$du = dx$$

$$dv = cos(x) dx$$

$$dv = \cos(x) dx$$
 $v = \int \cos(x) dx = \sin x$

then
$$\int x \cos(x) dx = \int u dv = u \cdot v - \int v du$$

$$= x \sin(x) - \int \sin(x) dx$$

$$= x \sin(x) + \cos(x) + c$$

Tabular Integration

Consider the integral of the form $\int f(x)g(x)dx$ in which $\int f(x)$ can be differential

repeatedly to Zero and g(x) can be integral repeatedly without difficulty Tabular integration save a great deal of work as natural method consider from integration

$$I = f(x)g_1(x) - f'(x)g_2(x) + f''(x)g_3(x) - \dots \pm f^{n-1}(x)g_n(x)$$

Solution:

$$I = \int x^2 e^x dx = x^2 e^x - 2xe^x + 2e^x + c$$

Evaluate
$$I = \int (x^3 - 2x^2 + 3x + 1)\sin(2x)dx$$

Solution:-

f(x) and Its derivative	g(x) and Its Integrals
$x^3 - 2x^2 + 3x + 1$	$\sin(2x)$
$3x^2-4x+3$	$\int \sin(2x)dx = -\frac{1}{2}\cos(2x)$
6x-4	$\int -\frac{1}{2}\cos(2x)dx = -\frac{1}{4}\sin(2x)$
6	$\int -\frac{1}{4}\sin(2x)dx = \frac{1}{8}\cos(2x)$
0	$\int \frac{1}{8}\cos(2x) = \frac{1}{16}\sin(2x)$

 $I = \dots$

Evaluate
$$I = \int e^x \sin(x) dx$$

Solution:-

$$u = e^x dv = \sin(x)dx$$

$$du = e^x dx$$

$$du = e^x dx$$
 $v = -\cos(x)$

$$I = -e^{x}\cos(x) + \int e^{x}\cos(x)dx = -e^{x}\cos(x) + \int e^{x}\cos(x)dx$$

Where

$$j = \int e^{x} \cos(x) dx \Rightarrow u = e^{x} \qquad dv = \cos(x) dx$$
$$du = e^{x} dx \qquad v = \sin(x)$$

$$\underbrace{j}_{t} = e^{x} \sin(x) - \underbrace{\int e^{x} \sin(x) dx}_{t} = e^{x} \sin(x) - I$$

$$I = -e^x \cos(x) + e^x \sin(x) - I \implies 2I = -e^x \cos(x) + e^x \sin(x) \implies \frac{1}{2} e^x (\cos(x) - \sin(x))$$

How To Solve
$$1 \int x^{2} \ln(x+1) dx \qquad \int x \cdot \sec^{-1}(x) dx \qquad \int x^{2} \tan^{-1}(x) dx \qquad \int \sin(\sqrt{2x}) dx$$

$$2 \int (x^{-2} + x^{-1} + 1) \ln(x) dx \qquad \int (x^{3} + x^{2} + x + 1) e^{-2x} dx \qquad \int e^{-x} \sin(x) dx \qquad \int x \sqrt{1-x}$$

$$3 \int x^{3} e^{-x} dx \qquad \int \sin[\ln(x)] dx$$

Good Luck ..