

Al-Mustaqbal University College of Engineering & Technology Biomedical Engineering Department

Computer

Lecture 2

Algorithms Development – Pseudo-code and Flowchart

PhD. BEng. Ahmed Hasan Janabi PhD in Cybersecurity

Email: Ahmed.Janabi@uomus.edu.iq

What is an algorithm?

- In computer programming, an algorithm is a set of well-defined instructions to solve a particular problem.
- It takes a set of input and produces a desired output.

```
Step 1: Start
```

Step 2: Define the variables

Step 3: Read values of

variables

Step 4: Process

- math operations
- logic operations
- comparisons

Step 5: Display result

Step 6: End

```
1. بدایة
```

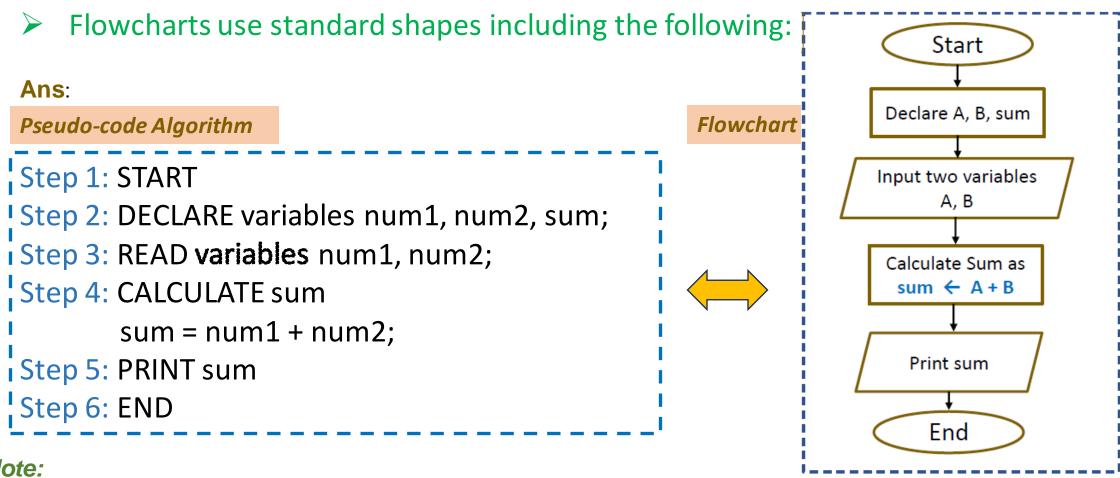
- 2. تعريف المتغيرات
- 3. قراءة قيمة كل متغير
 - 4. معالجة
 - عملیات ریاضیة
 - عمليات منطقية
 - مقارنات
 - 5. عرض/طباعة الناتج
 - ٠٠ نهاية

Algorithm to add two numbers

- ❖ We need to first write the steps (sequence of actins) that lead to performing the task.
- For example, an algorithm to add two numbers:
 - > Take two number inputs
 - ➤ Add numbers using the + operator
 - ➤ Display the result

Step#	Description	
Step1	Start	
Step2	Declare or define variables num1, num2, sum;	
Step3	Read values num1 and num2	
Step4	Add num1 and num2 and assign the results to sum sum — num1 + num2;	
Step5	Print sum	
Step6	End	

Flowchart Symbols

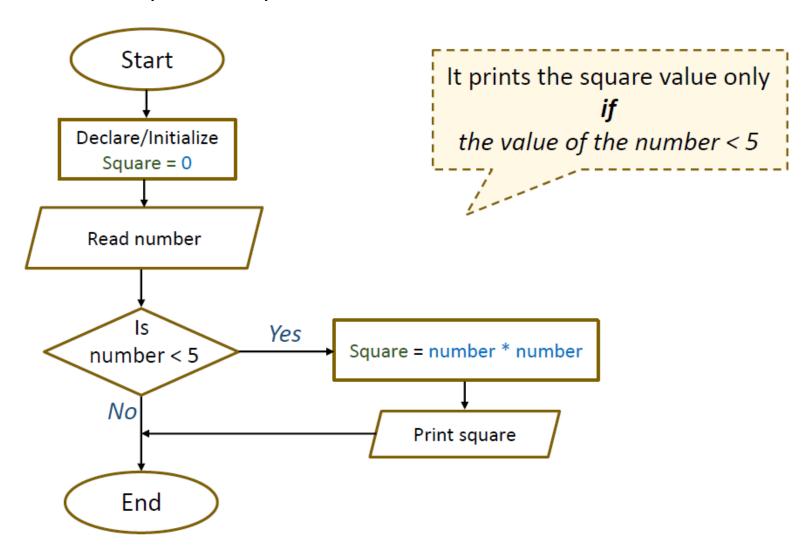

A Flowchart is a graphical representation that shows the behavior (workflow) of an algorithm.

Flowcharts use standard shapes including the following:

Symbol	Name	Description
	Start / End	An oval represents a <i>start</i> or <i>end</i> point
→	Arrows	A line is a connector that shows flow direction between the representative shapes
	Input /Output	A parallelogram represents <i>input</i> or <i>output</i>
	Process	A rectangular represents a <i>process</i> (calculation)
No ? Yes	Decision	A diamond indicates a <i>decision</i> (comparison)
	Connector	A circle is used to combine one part of the flowchart with another part

Adding two numbers

Write the pseudo-code for algorithm to sum two numbers. Then draw the equivalent flowchart.



Note:

- > The *pseudo-code* and *flowchart* of an algorithm is not written for a particular programming language.
- > They can be used to plan a solution before coding it.

Print if the condition met

Draw the Flowchart to print the square of a number if the number is less than 5.

Note:

> The lines and arrows in it show the sequence of steps and the relationship among them.

Difference between pseudo-code and flowchart

Main differences between Pseudo-code and Flowchart

- The pseudo-code is a high-level description of an algorithm while the flowchart is a graphical representation of an algorithm.
- ❖ An algorithm is a set of instructions for solving a problem or accomplishing a task.
- Every computerized device uses algorithms, which cut the time required to do things manually.
- There are three main ways or scenarios used in the programming. These are:
- 1) Sequencing putting things in the right order
- 2) Conditions performing different things depending on some rules
- 3) Iteration (Looping) repeating operations

Sequencing

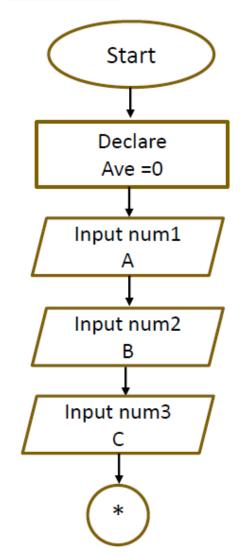
Calculate the average of three input numbers.

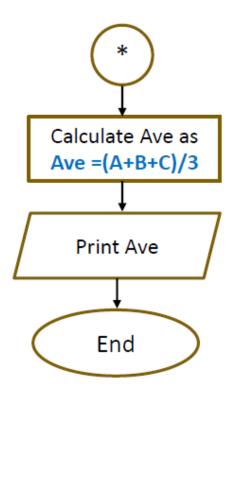
Pseudo-code Algorithm

```
Step 1: Start
```

Step 2: Declare variables Ave;

Step 3: Read variables num1, num2, num3;


Step 4: Calculate Ave


Ave = (num1 + num2 + num3)/3;

Step 5: Print Ave

Step 6: End

Flowchart

Conditions

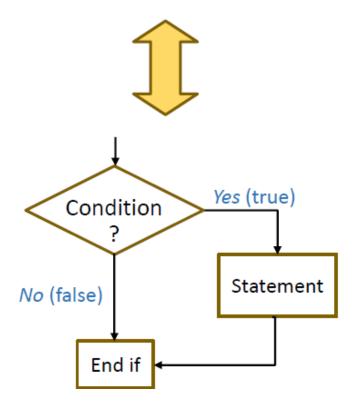
- Conditions are very important to understand the flow-control of the code being executed.
- Conditions are used to make a decision (choose between two or more alternatives based on the condition)

For example, conditions become very essential to use when facing different directions, so

based on the condition should choose the thing to be executed.

Use the *if* statement

```
If (condition) then
  run this statement;
Else
run the other statement;
```



Conditions

1 if then

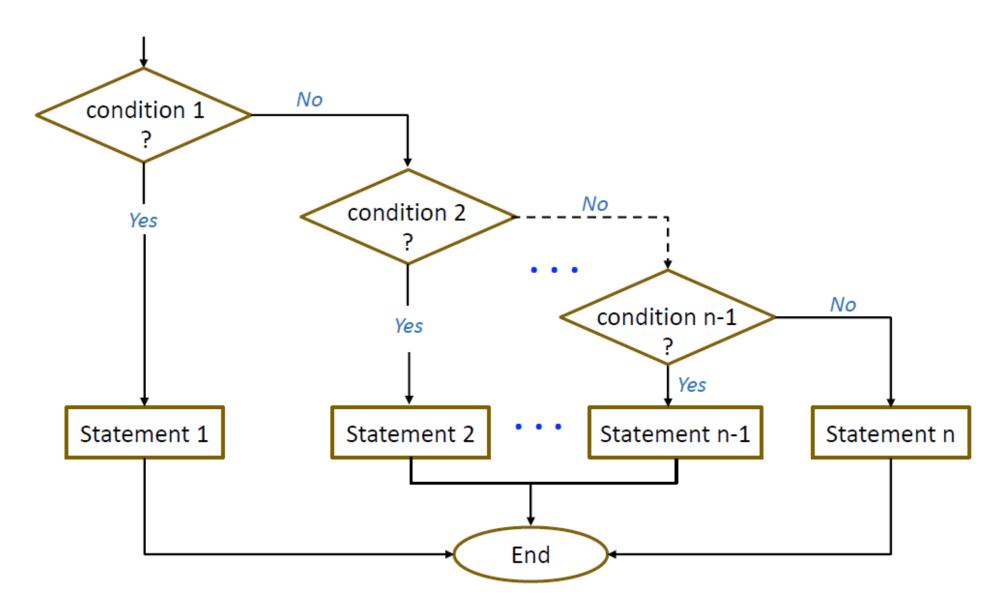
If (condition) then
 statement(s)

End if

if then else

If (condition) then statement 1 Elsestatement 2 End if No Yes Condition Statement Statement

Nested if structure


End if

```
Nested structure of
   if .... then
If (condition 1) then
 statement 1
If (condition 2) then
 statement 2
If (condition 3) then
 statement 3
Else
  statement 4
End if
End if
```

```
if .... then .... elseif
If (condition 1) then
 statement 1
Elseif (condition 2) then
 statement 2
Elseif (condition 3) then
 statement 3
Else
  statement 4
End if
```

if ... then ... elseif – Flowchart

if then elseif Flowchart

Condition – Example

✓ Write the pseudo-code to check if a student has passed the exam or failed. Then draw the equivalent

flowchart?

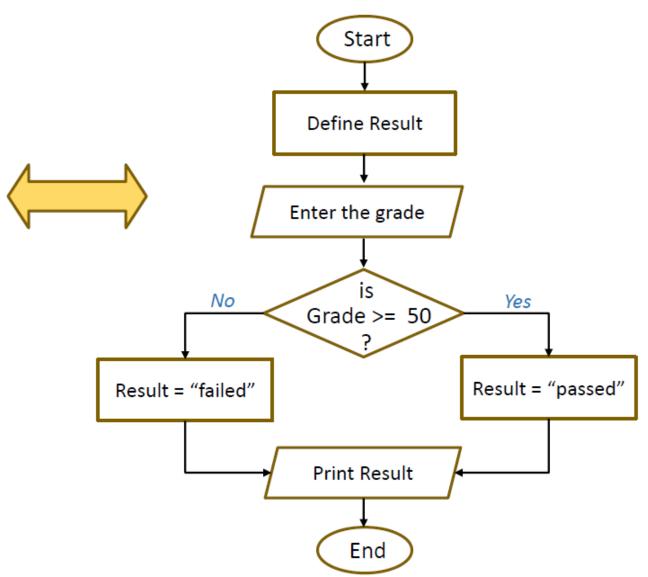
Ans

Step 1: Start

Step 2: Declare Result

Step 3: Read the student's grade

Step 4: *If* (Grade >= 50)


Result = "passed"

else

Result = "failed"

Step 5: Print result

Step 6: End

Classwork #1 – Student's Grade

✓ Send a message to a student depending on the obtained score?

Ans:

```
Step 1: Start
Step 2: Declare Result, message
Step 3: Read the student's grade
Step 4: If (Grade >= 50)
            Result = "pass"
             message = "Well Done!"
       else
             Result = "fail"
             message = "See me!"
Step 5: Print result
Step 6: End
```

Draw the equivalent flowchart

Flowchart

Multiple Conditions – Example

- ✓ Is it possible to have multiple conditions in an algorithm?
- ❖ For example, print the result of a student according to the conditions listed in the table below?

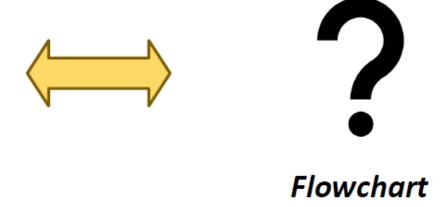
Grade value	Printed result	التقدير
Grade < 50	Result = "Failed"	ر اسب
Grade < 60	Result = "Passed"	مقبول
Grade < 70	Result = "Medium"	مـتوسط
Grade < 80	Result = "Good"	جيد
Grade < 90	Result = "Very good"	جيد جداً
Grade > = 90	Result = "Excellent"	امتیا ز

Multiple Conditions – Example solution

Ans:

```
Step 1: Start
Step 2: Declare Grade, Result
Step 3: Read the student's grade
Step 4: If (Grade < 50)
          Result = "failed"
        else if (Grade < 60)
          Result = "passed"
        else if (Grade < 70)
          Result = "medium"
        else if (Grade < 80)
          Result = "good"
```

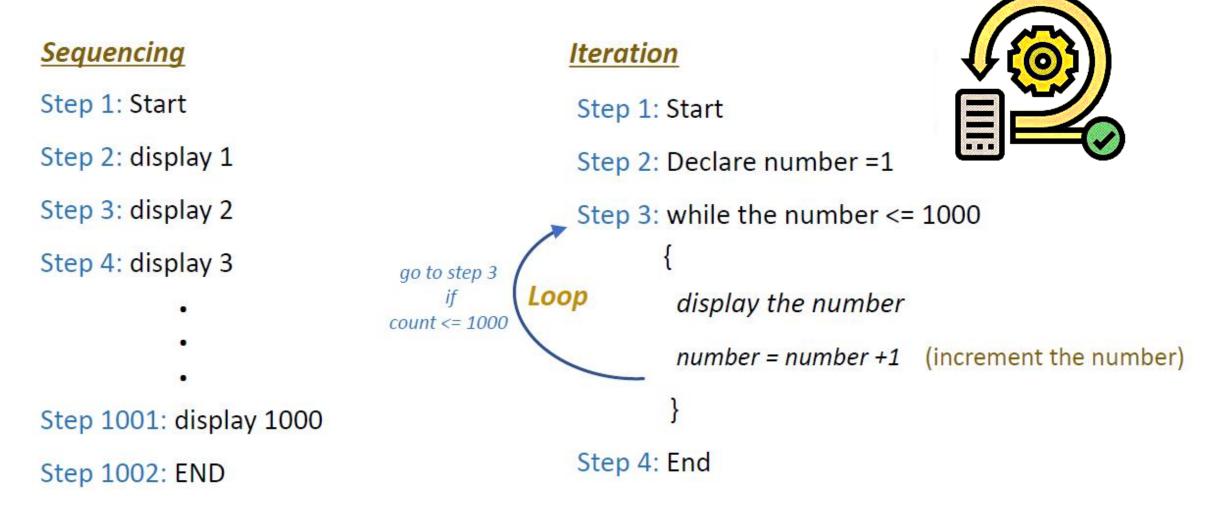
```
else if (Grade < 90)
            Result = "very good"
          else
             Result = "excellent"
Step 5: Print result
Step 6: End
```


Classwork #2 – Ticket price

✓ Write the pseudo-code algorithm to display the price of a cinema ticket as follow: (age < 12) then (price = 5K IQD), (age > 65) then (price = 7K IQD); otherwise (price = 10K IQD)?

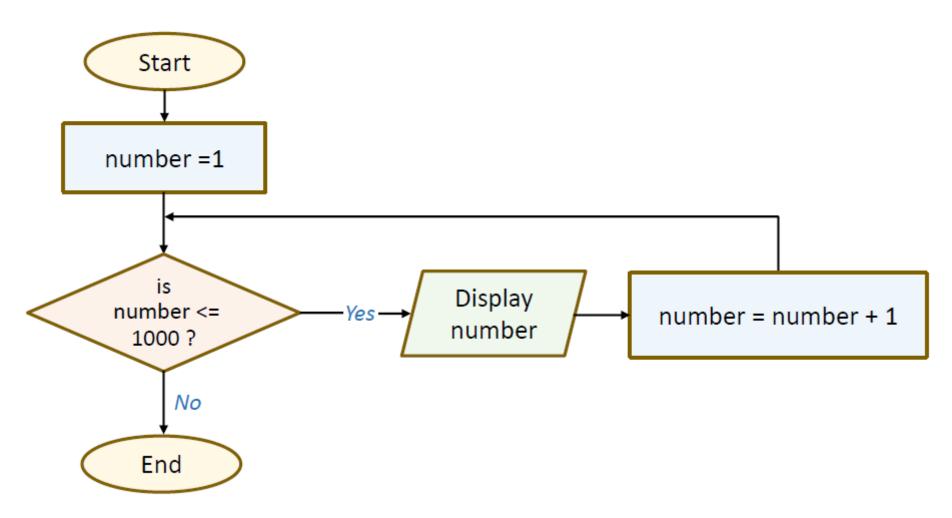
Ans:

```
Step 1: Start
Step 2: Declare price
Step 3: Read the customer's Age
Step 4: If (Age < 12)
               price = 5K
       Else if (Age > 65)
               price = 7K
       else
               price = 10K
Step 5: Display price
Step 6: End
```


Draw the equivalent flowchart

Iteration -> Repetition

- Let's say we need to print all the numbers from 1 to 1000.
- Would we do this by sequencing?
- It is much better to do tasks like that using iteration


Repeat the operation or sequence of operations until the condition is met

Iteration – printing the numbers from 1 to 1000

Flowchart

> print the numbers from 1 to 1000

Iteration – Summing five numbers

✓ Write the pseudo-code for algorithm to sum five numbers. Then draw the equivalent flowchart?

Ans:

```
Step 1: Start
```

Step 2: Initialization

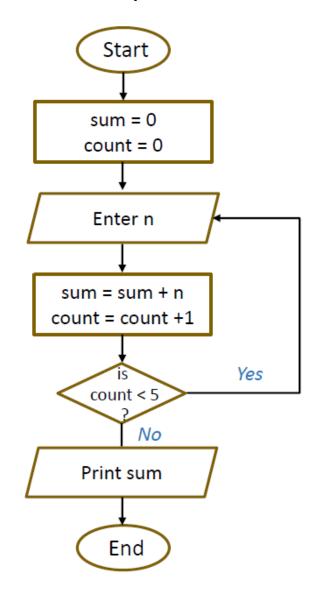
Initialize: sum = 0 and count = 0

Step 3: Enter *n* numbers

Step 4: Calculate sum and increment count

sum = sum + n

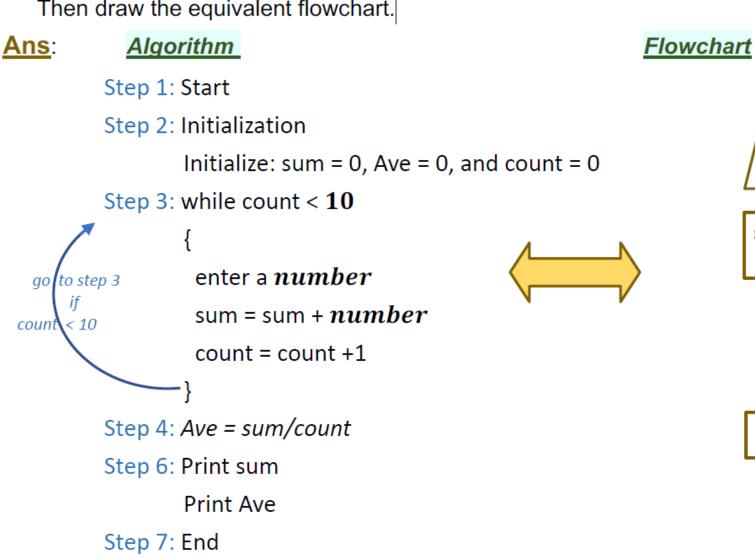
count = count +1

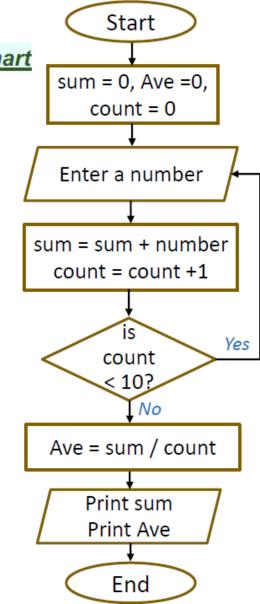

Step 5: while (count < 5)

go to step 3

Step 6: Print sum

Step 7: End





Average of ten numbers – Example

Nrite a pseudo-code algorithm to find the sum and average of ten numbers entered by the user.

Then draw the equivalent flowchart.

Qualities of Good Algorithms

- 1. Precision الْدَقَة the steps of input and output should be precisely defined.
- 2. Clarity الوضوح each step in the algorithm should be clear and unambiguous.
- 3. Inputs/Outputs المدخلات والمخرجات has inputs that lead to the production of the output
- 4. Effectiveness الفعالية Algorithms should solve problems in effective ways such that getting an
- 5. output from each step based on its inputs and outputs of the previous step
- 6. Generality العمومية/ الشمول the algorithm should be written in such a way that it can be used in
- 7. different programming languages.

#