
Al-Mustaqbal
University

College of Engineering &
Technology

Biomedical Engineering Department

Computer
Lecture 5 & 6

Conditions & Loops statements

Dr. Ahmed Hasan Janabi
PhD in Cybersecurity

Email: Ahmed.Janabi@uomus.edu.iq

Conditions
❖ Conditions are very important to understand the flow-control of the code being

executed.

❖ Conditions are used to make a decision (choose between two or more alternatives
based on the condition)

➢ For example, conditions become very essential to use when facing different directions, so
based on the condition should choose the thing to be executed.

Use the if statement
If (condition) then

 run this statement;

Else

run the other statement;

Conditions

Nested if structure

if … then … elseif – Flowchart

Example
#include <iostream>

using namespace std;

int main()

{

 int number;

cout << "Enter an integer: ";

cin >> number;

if (number > 0)

{

cout << "You entered a positive integer: " << number ;

 }

return 0;

}

Example

#include <iostream>

using namespace std;

int main()

{

 int number;
 cout << "Enter an integer: ";
 cin >> number;
if (number >= 0) {
 cout << "You entered a positive integer: " << number; }
 else {
cout << "You entered a negative integer: " << number; }

}

LOOPS :

• WHY DO WE NEED LOOPS ???

• There may be a situation, when you need to execute a block of
code several number of times.

• In general statements are executed sequentially: The first
statement in a function is executed first, followed by the second,
and so on.

• A loop statement allows us to execute a statement or group of
statements multiple times

LOOPS :

• TYPES OF LOOPS :

• WHILE LOOP
• FOR LOOP
• DO-WHILE LOOP
• NESTED LOOP

• LETS HAVE A CLOSER LOOK

LOOPS => WHILE LOOP

A while loop statement repeatedly executes a target statement as
long as a given condition is true.

Syntax:
 The syntax of a while loop in C is:

 while(condition)
 {
 statement(s);
 }

LOOPS => WHILE LOOP

• Here, statement(s) may be a single statement or a block of
statements. The condition may be any expression, and true is any
non-zero value. The loop iterates while the condition is true.

• When the condition becomes false, program control passes to the
line immediately following the loop

LOOPS => WHILE LOOP
FLOW DAIGRAM

LOOPS => WHILE LOOP
• EXAMPLE :
#include <iostream>
#include<stdlib.h>
int main ()
{
int a = 10;
while(a < 20)
 {
 printf(“value of a:%d \n”, a);
 a++;
 }
}

LOOPS => WHILE LOOP

• When the above code is compiled and executed, it produces the following result:

 value of a: 10
 value of a: 11
 value of a: 12
 value of a: 13
 value of a: 14
 value of a: 15
 value of a: 16
 value of a: 17
 value of a: 18
 value of a: 19

LOOPS :

FOR LOOP:
 A for loop is a repetition control structure that allows you to efficiently

write a loop that needs to execute a specific number of times.
Syntax:
The syntax of a for loop in C is:
 for (init; condition; increment)
 {
 statement(s);
 }

LOOPS => FOR LOOP

• The init step is executed first, and only once. This step allows you
to declare and initialize any loop control variables. You are not
required to put a statement here, as long as a semicolon appears.

• Next, the condition is evaluated. If it is true, the body of the loop is
executed. If it is false, the body of the loop does not execute and
flow of control jumps to the next statement just after the for loop.

LOOPS => FOR LOOP

• After the body of the for loop executes, the flow of control jumps
back up to the increment statement. This statement allows you to
update any loop control variables. This statement can be left
blank, as long as a semicolon appears after the condition.

• The condition is now evaluated again. If it is true, the loop
executes and the process repeats itself (body of loop, then
increment step, and then again condition). After the condition
becomes false, the for loop terminates.

LOOPS=> FOR LOOP
• Flow Diagram:

LOOPS => FOR LOOP

Example:
#include<stdlib.h>
#include <iostream>
int main ()
{
for(int a = 10; a < 20; a = a + 1)
 {
 printf("value of a: %d \n”, a);
 }
}

LOOPS => FOR LOOP

• When the above code is compiled and executed, it produces the following result:

 value of a: 10
 value of a: 11
 value of a: 12
 value of a: 13
 value of a: 14
 value of a: 15
 value of a: 16
 value of a: 17
 value of a: 18
 value of a: 19

LOOPS :

• DO-WHILE LOOP:

• Unlike for and while loops, which test the loop condition at the
top of the loop, the do...while loop checks its condition at the
bottom of the loop.

• A do...while loop is similar to a while loop, except that a do...while
loop is guaranteed to execute at least one time.

LOOPS => DO-WHILE LOOP

Syntax:
The syntax of a do...while loop in C is:
do
 {
 statement(s);
 }
while(condition);

 Notice that the conditional expression appears at the end of the loop,
so the statement(s) in the loop execute once before the condition is
tested.

LOOPS => DO-WHILE LOOP

• Flow Diagram:

LOOPS => DO-WHILE LOOP
• Example:

#include<stdlib.h>
#include <iostream>
 int main ()
 {
 int a = 10;
do
 {
 printf("value of a: %d\n “ ,a);
 a = a + 1;
 } while(a < 20);
}

LOOPS => DO-WHILE LOOP

• When the above code is compiled and executed, it produces the following result:

 value of a: 10
 value of a: 11
 value of a: 12
 value of a: 13
 value of a: 14
 value of a: 15
 value of a: 16
 value of a: 17
 value of a: 18
 value of a: 19

LOOPS :
• NESTED LOOPS :

• A loop can be nested inside of another loop.

• Syntax:
 The syntax for a nested for loop statement in C is as follows:
 for (init; condition; increment)

 {
 for (init; condition; increment)
 {
 statement(s);
 }
 statement(s);
 // you can put more statements.
 }

LOOPS => NESTED LOOP
• EXAMPLE :

 #include<stdlib.h>

 int main ()

 {

 int a=1,b;

 while(a<=3)

 {

 for(b=1;b<=3;b++)

 {

 printf("a = %d , b = %d\n",a,b);

 }

 printf("\n");

 a++;

 }

}

LOOPS => NESTED LOOP
• When the above code is compiled and executed, it produces the following result:

 a = 1 , b = 1
 a = 1 , b = 2
 a = 1 , b = 3

 a = 2 , b = 1
 a = 2 , b = 2
 a = 2 , b = 3

 a = 3 , b = 1
 a = 3 , b = 2
 a = 3 , b = 3

Exercises
Exercise 1: Write a program to check if a number is even or odd.

#include <stdio.h>
#include <iostream>
int main() {
 int num;
 printf("Enter an integer: ");
 scanf("%d", &num);

 if (num % 2 == 0) {
 printf("%d is an even number.\n", num);
 } else {
 printf("%d is an odd number.\n", num);
 }
}

Exercises
Exercise 2: Write a program that takes an integer input N and prints all even numbers from 1 to N
using a for loop.

#include <iostream>
using namespace std;
int main() {

 int N;
 cout << "Enter the value of N: ";
 cin >> N;

 cout << "Even numbers from 1 to " << N << " are: ";

 for (int i = 1; i <= N; i++) {

 if (i % 2 == 0) {
 cout << i << " ";
 }
 }

 cout << endl;

}

Exercises
Exercise 3: Write a program that calculates the sum of the first N natural numbers using a while
loop.

#include <iostream>

using namespace std;
int main() {
 int N, sum = 0, i = 1;
 cout << "Enter the value of N: ";
 cin >> N;
 while (i <= N) {
 sum += i;
 i++;

 }
 cout << "The sum of the first " << N << " natural numbers is: " << sum << endl;

 return 0;
}

Exercises
Exercise 4: Write a program that prints the multiplication table of a number using a for loop.

#include <stdio.h>
int main() {
 int num;
 printf("Enter a number to print its multiplication table: ");
 scanf("%d", &num);

 printf("Multiplication table of %d:\n", num);
 for (int i = 1; i <= 10; i++) {
 printf("%d * %d = %d\n", num, i, num * i);
 }

 return 0;
}

Exercises
Exercise 5: Write a program to find the largest of three numbers using if-else

#include <stdio.h>
int main() {
 int num1, num2, num3;
 printf("Enter three numbers: ");
 scanf("%d %d %d", &num1, &num2, &num3);

 if (num1 >= num2 && num1 >= num3) {
 printf("The largest number is %d\n", num1);
 } else if (num2 >= num1 && num2 >= num3) {
 printf("The largest number is %d\n", num2);
 } else {
 printf("The largest number is %d\n", num3);
 }

}

Thank
You

	Slide 1: Al-Mustaqbal University College of Engineering & Technology Biomedical Engineering Department
	Slide 2: Conditions
	Slide 3: Conditions
	Slide 4: Nested if structure
	Slide 5: if … then … elseif – Flowchart
	Slide 6: Example
	Slide 7: Example
	Slide 8: LOOPS :
	Slide 9: LOOPS :
	Slide 10: LOOPS => WHILE LOOP
	Slide 11: LOOPS => WHILE LOOP
	Slide 12: LOOPS => WHILE LOOP
	Slide 13: LOOPS => WHILE LOOP
	Slide 14: LOOPS => WHILE LOOP
	Slide 15: LOOPS :
	Slide 16: LOOPS => FOR LOOP
	Slide 17: LOOPS => FOR LOOP
	Slide 18: LOOPS=> FOR LOOP
	Slide 19: LOOPS => FOR LOOP
	Slide 20: LOOPS => FOR LOOP
	Slide 21: LOOPS :
	Slide 22: LOOPS => DO-WHILE LOOP
	Slide 23: LOOPS => DO-WHILE LOOP
	Slide 24: LOOPS => DO-WHILE LOOP
	Slide 25: LOOPS => DO-WHILE LOOP
	Slide 26: LOOPS :
	Slide 27: LOOPS => NESTED LOOP
	Slide 28: LOOPS => NESTED LOOP
	Slide 29: Exercises
	Slide 30: Exercises
	Slide 31: Exercises
	Slide 32: Exercises
	Slide 33: Exercises
	Slide 34

