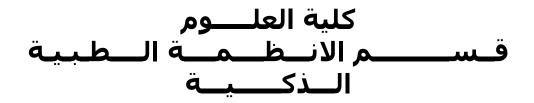


**College of Science** 

**Intelligent Medical System Department** 





المحاضرة الثانية

# **Digital Signal Processing**

المادة : DSP المرحلة : الثالثة اسم الاستاذ: م.م. ريام ثائر احمد



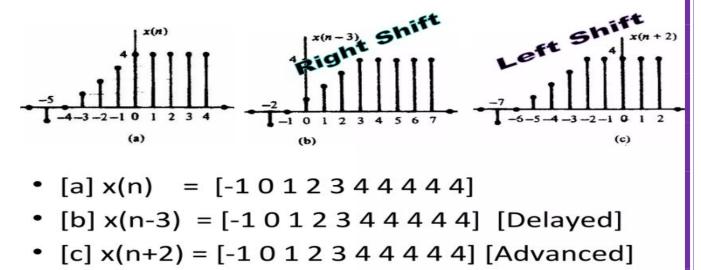
# **Operations on Signals**

# 2.1. Shifting

Shifting means movement of the signal, either in time domain (around Y-axis) or in amplitude domain (around X-axis).

$$\begin{array}{c} \textbf{x(n)} \\ \hline \textbf{Shift by } n_o \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o) \\ \hline \textbf{y(r } y(n) = x(n - n_o)$$

If  $y(n) = x(n - n_o)$ , x(n) is shifted to the right by  $n_o$  samples if no is **positive** (this is referred to as a delay), and it is shifted to the left by  $n_o$  samples if  $n_o$  is **negative** (referred to as an advance).



We can classify the shifting into two categories named as Time shifting and Amplitude shifting, these are subsequently discussed below.

#### Al-Mustaqbal University College of Science



#### Intelligent Medical System Department

#### a- Time Shifting

Time shifting means, shifting of signals in the time domain. Mathematically, it can be written as

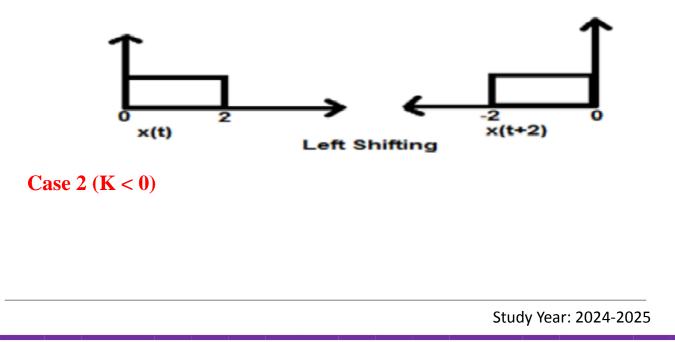
 $x(t) \rightarrow y(t+k)$ 

This K value may be positive or it may be negative. According to the sign of k value, we have two types of shifting named as Right shifting and Left shifting.

#### **Case 1 (K > 0)**

When  $\mathbf{K}$  is greater than zero, the shifting of the signal takes place towards right in the time domain. Therefore, this type of shifting is known as Left Shifting of the signal.

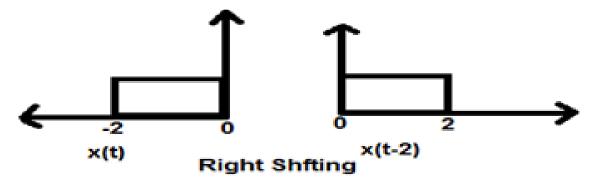
#### **Example:**





When K is less than zero the shifting of signal takes place towards right in the time domain. Therefore, this type of shifting is known as Right shifting.

**Example:** The figure given below shows right shifting of a signal by 2.



## **b- Amplitude Shifting**

Amplitude shifting means shifting of signal in the amplitude domain (around

X-axis). Mathematically, it can be represented as:

$$x(t) \rightarrow x(t) + K$$

This  $\mathbf{K}$  value may be positive or negative. Accordingly, we have two types of

amplitude shifting which are subsequently discussed below.

**Case 1 (K > 0)** 



#### Al-Mustaqbal University College of Science Intelligent Medical System Department

When  $\mathbf{K}$  is greater than zero, the shifting of signal takes places towards up in the

x-axis. Therefore, this type of shifting is known as upward shifting.

#### Example:

Let us consider a signal x(t) which is given as:

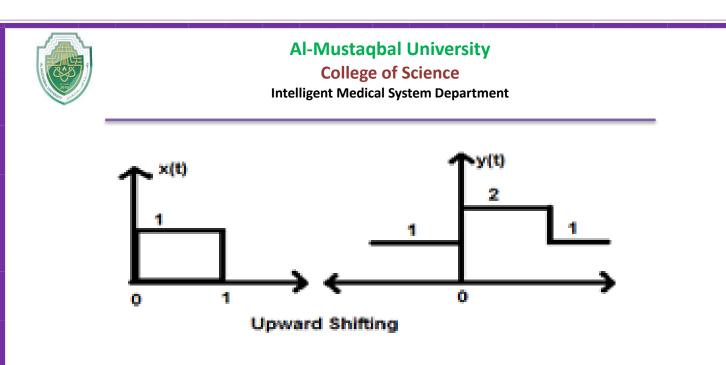
$$x(t) = \begin{cases} 0, t < 0\\ 1, 0 \le t \le 2\\ 0, t > 0 \end{cases}$$

Let we have taken **K=+1** so new signal can be written as:

 $(t) \rightarrow (t) + 1$ 

So, **y**(**t**) can finally be written as:

$$y(t) = \begin{cases} 1, t < 0\\ 2, 0 \le t \le 2\\ 1, t > 0 \end{cases}$$



Case 2 (K < 0)

When **K** is less than zero shifting of signal takes place towards downward in the X- axis. Therefore, it is called downward shifting of the signal.

**Example:** Let us consider a signal x(t) which is given as:

$$x(t) = \begin{cases} 0, t < 0\\ 1, 0 \le t \le 2\\ 0, t > 0 \end{cases}$$

Let we have taken K=-1 so new signal can be written as:

$$(t) \rightarrow (t) - 1$$

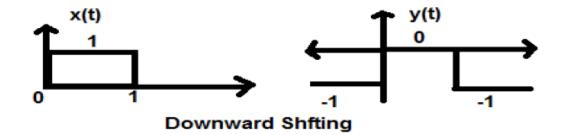
So, **y**(**t**) can finally be written as:



College of Science

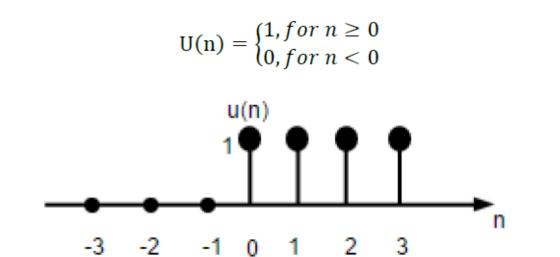
Intelligent Medical System Department

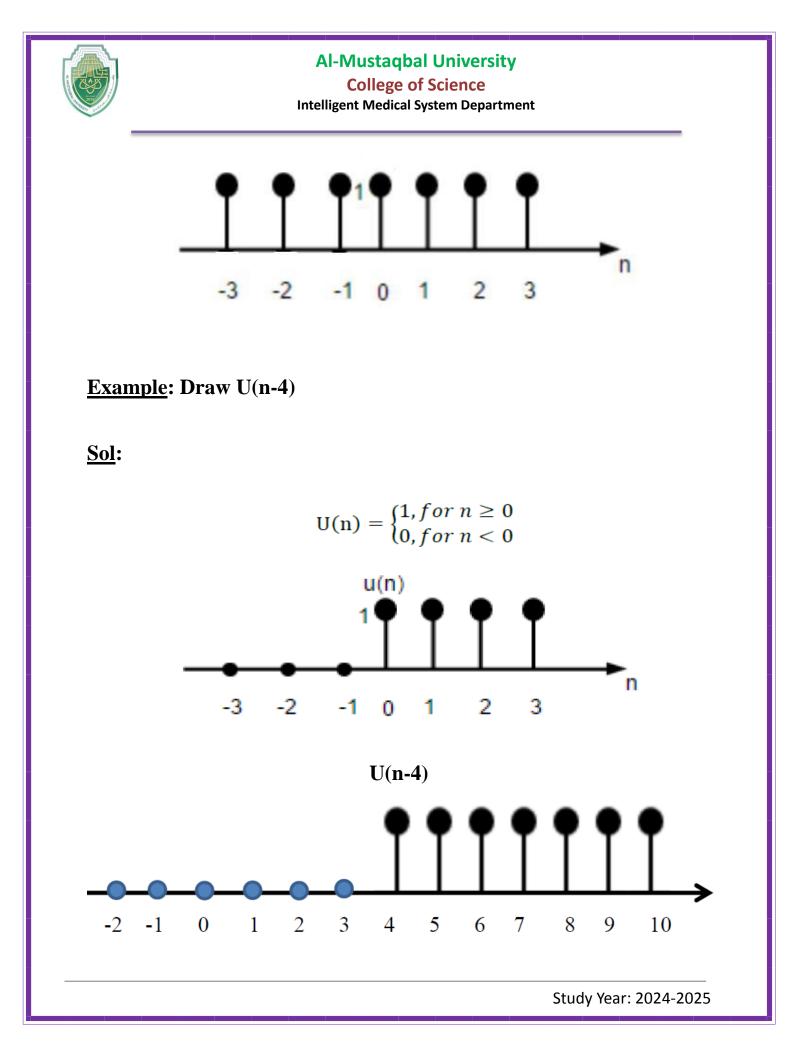
$$y(t) = \begin{cases} -1, t < 0\\ 0, 0 \le t \le 2\\ -1, t > 0 \end{cases}$$



**Example:** Find U(n+3)

<u>Sol</u>:







College of Science Intelligent Medical System Department

## **H.W:**

- Draw U(n) +2

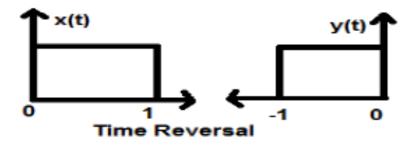
# 2.2. Reversal

## a- Time Reversal

Whenever signal's time is multiplied by -1, it is known as time reversal of the signal. In this case, the signal produces its mirror image about Y-axis. Mathematically, this can be written as;

$$x(t) \rightarrow y(t) \rightarrow x(-t)$$

This can be best understood by the following example.



In the above example, we can clearly see that the signal has been reversed about its Y-axis. So, it is one kind of time scaling also, but here the scaling quantity is -1 always.

## **b. Amplitude Reversal**

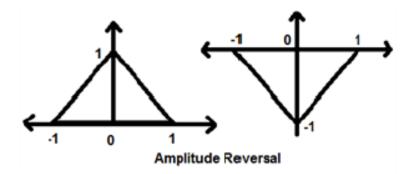
Whenever the amplitude of a signal is multiplied by -1, then it is known as amplitude reversal. In this case, the signal produces its mirror image about X-axis. Mathematically, this can be written as:



College of Science Intelligent Medical System Department

 $x(t) \rightarrow y(t) \rightarrow -x(t)$ 

Consider the following example. Amplitude reversal can be seen clearly.



## 2.3. Scaling

Scaling of a signal means, a constant is multiplied with the time or amplitude of the signal.

#### a. Time Scaling

If a constant is multiplied to the time axis, then it is known as Time scaling. This can be mathematically represented as:

$$x(t) \rightarrow y(t) = x(\alpha t) \text{ or } x\left(\frac{t}{\alpha}\right); \text{ where } \alpha \neq 0$$

So the y-axis being same, the x- axis magnitude decreases or increases according to the sign of the constant (whether positive or negative). Therefore, scaling can also be divided into two categories as discussed below.



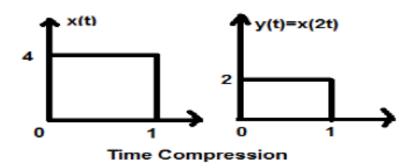
#### Al-Mustaqbal University College of Science

#### Intelligent Medical System Department

## **<u>Time Compression</u>**

Whenever alpha is greater than zero, the signal's amplitude gets divided by alpha whereas the value of the Y-axis remains the same. This is known as Time Compression.

**Example**: Let us consider a signal  $\mathbf{x}(\mathbf{t})$ , which is shown as in figure below. Let us take the value of alpha as 2. So,  $\mathbf{y}(\mathbf{t})$  will be  $\mathbf{x}(2\mathbf{t})$ , which is illustrated in the given figure.



Clearly, we can see from the above figures that the time magnitude in yaxis remains the same but the amplitude in x-axis reduces from 4 to 2. Therefore, it is a case of Time Compression.

## **<u><b>Time Expansion**</u>

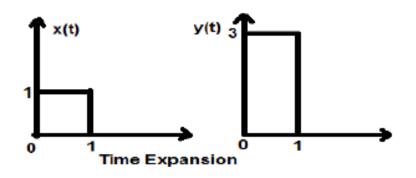
When the time is divided by the constant alpha, the Y-axis magnitude of the signal get multiplied alpha times, keeping X-axis magnitude as it is. Therefore, this is called Time expansion type signal.



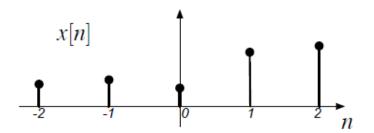
#### Al-Mustaqbal University College of Science Intelligent Medical System Department

## Example

Let us consider a square signal xtt, of magnitude 1. When we time scaled it by a constant 3, such that  $x(t) \rightarrow y(t) \rightarrow x(t3)$ , then the signal's amplitude gets modified by 3 times which is shown in the figure below.



**Example:** For x[n] shown below, Find x[n/2].

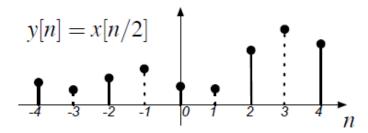


<u>Sol/</u>

| n  | x[n]  | y[n]=x[n/2]          |
|----|-------|----------------------|
| -2 | x[-2] | y[-2]=x[-2/2)]=x[-1] |
| -1 | x[-1] | y[-1]=x[-1/2]=0      |
| 0  | x[0]  | y[0]=x[0/2]=x[0]     |
| 1  | x[1]  | y[1]=x[1/2]=0        |
| 2  | x[2]  | y[2]=x[2/2]=x[1]     |



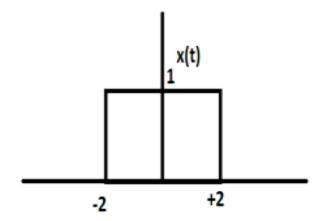
College of Science Intelligent Medical System Department



## **b- Amplitude Scaling**

Multiplication of a constant with the amplitude of the signal causes amplitude scaling. Depending upon the sign of the constant, it may be either amplitude scaling or attenuation.

**Example:** For x[n] that shown below, Find 2x[n].

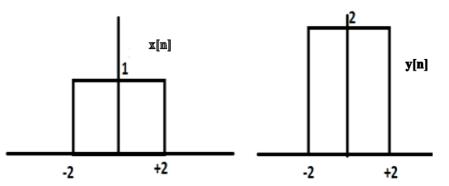


<u>Sol/</u>



College of Science

Intelligent Medical System Department



Amplitude Scalling

| n  | x[n]  | y[n]=2x[n]         |
|----|-------|--------------------|
| -2 | x[-2] | y[-2]=2x[-2]=2*1=2 |
| 2  | x[2]  | y[2]=2x[2]=2*1=2   |