
Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

 كلية التقنيات الطبية والصحية

 ة ـــيـــ ـــذك ـــة ال ـي ـب ـطـ ـــة الـ ـــم ـ ـــظ ـــم الان ـــــــ ـــس ــق

Subject: Data Structure

Class: Second

Lecturer: Asst. Prof. Mehdi Ebady Manaa

Lecture: (5)

Queues

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 2

Queues

The word queue is British for line (the kind you wait in). In Britain, to “queue up” means to get in

line. In computer science a queue is a data structure that is somewhat like a stack, except that in a

queue the first item inserted is the first to be removed (First-In-First-Out, FIFO), while in a stack,

as we’ve seen, the last item inserted is the first to be removed (LIFO). A queue works like the line

at the movies:

The first person to join the rear of the line is the first person to reach the front of the line and buy

a ticket. The last person to line up is the last person to buy a ticket (or—if the show is sold out—

to fail to buy a ticket). Figure 4 shows how such a queue looks.

Figure 4: A queue of people.

Examples of applications Queue:

1. Queue used to model real-world situations such as people waiting in line at a bank, airplanes

waiting to take off, or data packets waiting to be transmitted over the Internet.

2. There are various queues quietly doing their job in your computer’s (or the network’s) operating

system.

3. There’s a printer queue where print jobs wait for the printer to be available.

Also there are several possible applications for queues.

4. Stores, reservation centers, and other similar services typically process customer requests

according to the FIFO principle. A queue would therefore be a logical choice for a data structure

to handle transaction processing for such applications. For example, it would be a natural choice

for handling calls to the reservation center of an airline.

The Queue Abstract Data Type

Formally, the queue abstract data type defines a collection that keeps objects in a sequence, where

element access and deletion are restricted to the first element in the sequence, which is called the

front of the queue, and element insertion is restricted to the end of the sequence, which is called

the rear of the queue. This restriction enforces the rule that items are inserted and deleted in a

queue according to the first-in first-out (FIFO) principle. The queue abstract data type (ADT)

supports the following two fundamental methods:

enqueue(e): Insert element e at the rear of the queue.

dequeue(): Remove and return from the queue the

object at the front; an error occurs if the queue is empty.

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 3

Additionally, similar to the case with the Stack ADT, the queue ADT includes the following

supporting methods:

size(): Return the number of objects in the queue.

isEmpty(): Return a Boolean value that indicates whether the queue is empty.

front(): Return, but do not remove, the front object in the queue; an error occurs if the queue is

empty.

Figure 5: Operations of the Queue

enqueue(e):

Description: Here QUEUE is an array with N locations. FRONT and REAR points to the front

and rear of the QUEUE. ITEM is the value to be inserted.

1. If (REAR == N) Then [Check for overflow]

2. Print: Overflow

3. Else

4. If (FRONT and REAR == 0) Then [Check if QUEUE is empty]

 (a) Set FRONT = 1

 (b) Set REAR = 1

5. Else

6. Set REAR = REAR + 1 [Increment REAR by 1]

 [End of Step 4 If]

7. QUEUE[REAR] = ITEM

8. Print: ITEM inserted

 [End of Step 1 If]

9. Exit

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 4

dequeue():

Description: Here QUEUE is an array with N locations. FRONT and REAR points to the front

and rear of the QUEUE.

1. If (FRONT == 0) Then [Check for underflow]

2. Print: Underflow

3. Else

4. ITEM = QUEUE[FRONT]

5. If (FRONT == REAR) Then [Check if only one element is left]

 (a) Set FRONT = 0

 (b) Set REAR = 0

6. Else

7. Set FRONT = FRONT + 1 [Increment FRONT by 1]

 [End of Step 5 If]

8. Print: ITEM deleted

 [End of Step 1 If]

9. Exit

Figure 6: A Queue with some items removed

When you insert a new item in the Queue, the Front arrow moves upward, when you remove an

item, Rear also moves upward.

The trouble with this arrangement is that pretty soon the rear of the queue is at the end of the array

(the highest index). Even if there are empty cells at the beginning of the array, because you’ve

removed them with F, you still can’t insert a new item because Rear can’t go any further. Or can

it? This situation is shown in Figure 7.

12

5

6

3

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 5

 Figure 7. Rear arrow at the end of the array.

To avoid the problem of not being able to insert more items into the queue even when it’s not full,

the Front and Rear arrows wrap around to the beginning of the array. The results a circular queue

(sometimes called a ring buffer). Insert enough items to bring the Rear arrow to the top of the

array (index 9). Remove some items from the front of the array.

Now insert another item. You’ll see the Rear arrow wrap around from index 9 to index 0; the new

item will be inserted there. This situation is shown in Figure 8.

 Figure 8. Rear arrow wraps around

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 6

The queue ADT

The queue ADT is defined by the following operations:

constructor

Create a new, empty queue.

insert

Add a new item to the queue.

remove

Remove and return an item from the queue. The item that is returned is the first one that was added.

empty

Check whether the queue is empty.

We know that a linear queue is a “first in first out “ data structure,i.e.,

• Insertion can be made only at the end and

• Deletion can be made only at the front.

In a linear queue, the traversal through the queue is possible only once,i.e.,once an element is

deleted, we cannot insert another element in its position. This disadvantage of a linear queue is

overcome by a circular queue, thus saving memory.

Circular Queue

A circular queue is a Queue but a particular implementation of a queue. It is very efficient. It is

also quite useful in low level code, because insertion and deletion are totally independant, which

means that you don't have to worry about an interrupt handler trying to do an insertion at the same

time as your main code is doing a deletion.

Linear queue:

No more elements can be inserted in a linear queue now.

Circular queue:

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 7

 In a circular queue, after rear reaches the end of the queue, it can be reset to zero. This helps

in refilling the empty spaces in between.

The difficulty of managing front and rear in an array-based non-circular queue can be overcome if

we treat the queue position with index 0 as if it comes after the last position (in our case, index 9),

i.e., we treat the queue as circular. Note that we use the same array declaration of the queue.

Empty queue:

Empty queues:

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 8

Implementation of operations on a circular queue:

Testing a circular queue for overflow

There are two conditions:

• (front=0) and (rear=capacity-1)

• front=rear+1

If any of these two conditions is satisfied, it means that circular queue is full.

The enqueue Operation on a Circular Queue

There are three scenarios which need to be considered, assuming that the queue is not full:

Al-Mustaqbal University
College of Healthcare and Medical Techniques

Intelligent Medical System Department

| P a g e 9

1. If the queue is empty, then the value of the front and the rear variable will be -1 (i.e., the

sentinel value), then both front and rear are set to 0.

2. If the queue is not empty, then the value of the rear will be the index of the last element

of the queue, then the rear variable is incremented.

3. If the queue is not full and the value of the rear variable is equal to capacity -1 then rear

is set to 0.

The dequeue Operation on a Circular Queue

Again, there are three possibilities:

1. If there was only one element in the circular queue, then after the dequeue operation the

queue will become empty. This state of the circular queue is reflected by setting the front

and rear variables to -1.

2. If the value of the front variable is equal to CAPACITY-1, then set front variable to 0.

3. If neither of the above conditions hold, then the front variable is incremented

