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The Foundations: Logic and Proofs 

 

 

The rules of logic specify the meaning of mathematical statements. For instance, 

these rules help us understand and reason with statements such as “There exists an 

integer that is not the sum of two squares” and “For every positive integern, the sum 

of the positive integers not exceeding n is n(n+1)/2.” Logic is the basis of all 

mathematical reasoning, and of all automated reasoning. It has practical applications 

to the design of computing machines, to the specification of systems, to artificial 

intelligence, to computer programming, to programming languages, and to other 

areas of computer science, as well as to many other fields of study.  

To understand mathematics, we must understand what makes up a correct 

mathematical argument, that is, a proof. Once we prove a mathematical statement is 

true, we call it a theorem. A collection of theorems on a topic organize what we know 

about this topic. To learn a mathematical topic, a person needs to actively construct 

mathematical arguments on this topic, and not just read exposition. Moreover, 

knowing the proof of a theorem often makes it possible to modify the result to fit 

new situations. 

Propositional Logic 

A Proposition Is a declarative sentence (that is, a sentence that declares a fact) that 

is either true or false, but not both. 

For example, all the following declarative sentences are propositions. 

1. Washington, D.C., is the capital of the United States of America. 

2. Toronto is the capital of Canada. 

3. 1+1=2. 

4. 2+2=3. 

Propositions 1 and 3 are true, whereas 2 and 4 are false. Some sentences that are 

not propositions such as: 

1. What time is it? 



2. Read this carefully. 

3.x+1=2. 

4.x+y=z. 

Sentences 1 and 2 are not propositions because they are not declarative sentences. 

Sentences 3 and 4 are not propositions because they are neither true nor false. Note 

that each of sentences 3 and 4 can be turned into a proposition if we assign values to 

the variables. We use letters to denote propositional variables (or statement 

variables), that is, variables that represent propositions, just as letters are used to 

denote numerical variables. The conventional letters used for propositional variables 

are p, q, r, s, .... The truth value of a proposition is true, denoted by T, if it is a true 

proposition, and the truth value of a proposition is false, denoted by F, if it is a false 

proposition. 

Defination 1: Negation 

 

Example 1:  

Find the negation of the proposition “Michael’s PC runs Linux” and express this in 

simple English. 

Solution: 

The negation is “It is not the case that Michael’s PC runs Linux.” 

This negation can be more simply expressed as “Michael’s PC does not run Linux.” 

Example 2:  

Find the negation of the proposition “Vandana’s smartphone has at least 32GB of 

memory” and express this in simple English. 

Solution: 



The negation is 

“It is not the case that Vandana’s smartphone has at least 32GB of memory.” 

This negation can also be expressed as 

“Vandana’s smartphone does not have at least 32GB of memory” 

or even more simply as 

“Vandana’s smartphone has less than 32GB of memory.” 

Table 1 displays the truth table for the negation of a proposition p. This table has a 

row for each of the two possible truth values of a proposition p. Each row shows the 

truth value of ¬p corresponding to the truth value of p for this row. 

 

Defination 2: Conjunction 

 

Table 2 displays the truth table of p∧ q. This table has a row for each of the four 

possible combinations of truth values of p and q. The four rows correspond to the 

pairs of truth values TT, TF, FT, and FF, where the first truth value in the pair is the 

truth value of p and the second truth value is the truth value of q.  



 

❖ Note that in logic the word “but” sometimes is used instead of “and” in a 

conjunction. For example, the statement “The sun is shining, but it is raining” 

is another way of saying “The sun is shining and it is raining.” 

Example 3:  

Find the conjunction of the propositions p and q where p is the proposition “Ali’s 

PC has more than 16 GB free hard disk space” and q is the proposition “The 

processor in Ali’s PC runs faster than 1 GHz.” 

Solution: 

The conjunction of these propositions, p∧ q, is the proposition “Ali’s PC has more 

than 16 GB free hard disk space, and the processor in Ali’s PC runs faster than 1 

GHz.”  

This conjunction can be expressed more simply as “Ali’s PC has more than 16 GB 

free hard disk space, and its processor runs faster than 1 GHz.”  

❖ For this conjunction to be true, both conditions given must be true. It is false, 

when one or both of these conditions are false. 

Defination 3: Disjunction 

 

Table 3 displays the truth table for p∨ q. 



 

 

The use of the connective or in a disjunction corresponds to one of the two ways the 

word or is used in English, namely, as an inclusive or. A disjunction is true when at 

least one of the two propositions is true.  

Example 4:  

What is the disjunction of the propositions p and q where p and q are the same 

propositions as in Example 3? 

Solution: 

The disjunction of p and q, p∨ q, is the proposition 

“Rebecca’s PC has at least 16 GB free hard disk space, or the processor in Rebecca’s 

PC runs faster than 1 GHz.” 

This proposition is true when Rebecca’s PC has at least 16 GB free hard disk space, 

when the PC’s processor runs faster than 1 GHz, and when both conditions are true. 

It is false when both of these conditions are false, that is, when Rebecca’s PC has 

less than 16 GB free hard disk space and the processor in her PC runs at 1 GHz or 

slower. 

Defination 4: Exclusive Or 

 

The truth table for the exclusive or of two propositions is displayed in Table 4 



 

Defination 5: Conditional Statement 

 

The statement p → q is called a conditional statement because p → q asserts that q 

is true on the condition that p holds. A conditional statement is also called an 

implication. The truth table for the conditional statement p → q is shown in Table 

5. Note that the statement p → q is true when both p and q are true and when p is 

false (no matter what truth value q has). Because conditional statements play such 

an essential role in mathematical reasoning, a variety of terminology is used to 

express p → q. You will encounter most if not all of the following ways to express 

this conditional statement: 

 



 

A useful way to understand the truth value of a conditional statement is to think of 

an obligation or a contract. For example, the pledge many politicians make when 

running for office is “If I am elected, then I will lower taxes.” If the politician is 

elected, voters would expect this politician to lower taxes. Furthermore, if the 

politician is not elected, then voters will not have any expectation that this person 

will lower taxes, although the person may have sufficient influence to cause those in 

power to lower taxes. It is only when the politician is elected but does not lower 

taxes that voters can say that the politician has broken the campaign pledge. This last 

scenario corresponds to the case when p is true but q is false in p → q. 

Example 5:  

Let p be the statement “Maria learns discrete mathematics” and q the statement 

“Maria will find a good job.” Express the statement p → q as a statement in English. 

Solution: 

From the definition of conditional statements, we see that when p is the statement 

“Maria learns discrete mathematics” and q is the statement “Maria will find a good 

job,” p → q represents the statement  

“If Maria learns discrete mathematics, then she will find a good job.” 

There are many other ways to express this conditional statement in English. 

Among the most natural of these are: 

“Maria will find a good job when she learns discrete mathematics.” 

“For Maria to get a good job, it is sufficient for her to learn discrete mathematics.” 

and 



“Maria will find a good job unless she does not learn discrete mathematics.” 

Defination 6: Biconditional Statement 

 

The truth table for p ↔ q is shown in Table 6. Note that the statement p ↔ q is true 

when both the conditional statements p → q and q → p are true and is false 

otherwise. That is why we use the words “if and only if” to express this logical 

connective and why it is symbolically written by combining the symbols → and ←.  

 

There are some other common ways to express p ↔ q :  

“p is necessary and sufficient for q”  

“if p then q, and conversely”  

“p iff q.” 

The last way of expressing the biconditional statement  p  ↔  q  uses the abbreviation 

“iff” for  “if and only if.” Note that  p  ↔  q has exactly the same truth value as  (p  →  

q) ∧ (q →  p). 

Example 6:  

Let  p  be the statement “You can take the flight,” and let  q  be the statement “You buy 

a ticket.” Then  p ↔ q is the statement 

“You can take the flight if and only if you buy a ticket.” 



This statement is true if  p  and  q  are either both true or both false, that is, if you buy 

a ticket and  can take the flight or if you do not buy a ticket and you cannot take the 

flight. It is false when  p  and  q  have opposite truth values, that is, when you do not 

buy a ticket, but you can take the  flight (such as when you get a free trip) and when 

you buy a ticket but you cannot take the flight  (such as when the airline bumps you). 

Truth Tables of Compound Propositions 

We have now introduced four important logical connectives—conjunctions, 

disjunctions, conditional statements, and biconditional statements—as well as 

negations. We can use these connectives to build up complicated compound 

propositions involving any number of propositional  variables. We can use truth 

tables to determine the truth values of these compound propositions,  as Example 7 

illustrates. We use a separate column to find the truth value of each compound  

expression that occurs in the compound proposition as it is built up. The truth values 

of the  compound proposition for each combination of truth values of the 

propositional variables in it is found in the final column of the table. 

Example 7:  

Construct the truth table of the compound proposition 

(p  ∨ ¬q) → (p  ∧ q) 

Solution: 

Because this truth table involves two propositional variables p and q, there are four 

rows in this truth table, one for each of the pairs of truth values TT, TF, FT, and FF. 

The first two columns are used for the truth values of p and q, respectively. In the 

third column we find the truth value of ¬q, needed to find the truth value of p ∨ ¬q, 

found in the fourth column. The fifth column gives the truth value of p ∧ q. Finally, 

the truth value of (p ∨ ¬q) → (p ∧ q) is found in the last column. The resulting truth 

table is shown in Table 7. 



 

Precedence of Logical Operators 

We can construct compound propositions using the negation operator and the logical 

operators defined so far. We will generally use parentheses to specify the order in 

which logical operators in a compound proposition are to be applied. For instance, 

(p ∨ q) ∧ (¬r) is the conjunction of p ∨ q and ¬r. However, to reduce the number of 

parentheses, we specify that the negation operator is applied before all other logical 

operators. This means that ¬p ∧ q is the conjunction of ¬p and q, namely, (¬p) ∧ q, 

not the negation of the conjunction of p and q, namely ¬(p ∧ q).  

Another general rule of precedence is that the conjunction operator takes precedence 

over the disjunction operator, so that p ∧ q ∨ r means (p ∧ q) ∨ r rather than p ∧ (q ∨ 
r). Because this rule may be difficult to remember, we will continue to use 

parentheses so that the order of the disjunction and conjunction operators is clear.  

Finally, it is an accepted rule that the conditional and biconditional operators → and 

↔ have lower precedence than the conjunction and disjunction operators, ∧ and ∨. 

Consequently, p ∨ q → r is the same as (p ∨ q) →r. We will use parentheses when 

the order of the conditional operator and biconditional operator is at issue, although 

the conditional operator has precedence over the biconditional operator. Table 8 

displays the precedence levels of the logical operators, ¬, ∧, ∨, →, and↔. 



 

Logic and Bit Operations 

Computers represent information using bits. A bit is a symbol with two possible 

values, namely, 0 (zero) and 1 (one). This meaning of the word bit comes from binary 

digit, because zeros and ones are the digits used in binary representations of 

numbers. The well-known statistician John Tukey introduced this terminology in 

1946. A bit can be used to represent a truth value, because there are two truth values, 

namely, true and false. As is customarily done, we will use a 1 bit to represent true 

and a 0 bit to represent false. That is, 1 represents T (true), 0 represents F (false). A 

variable is called a Boolean variable if its value is either true or false.  

 

Consequently, a Boolean variable can be represented using a bit. Computer bit 

operations correspond to the logical connectives. By replacing true by a one and 

false by a zero in the truth tables for the operators∧, ∨, and⊕, the tables shown in 

Table 9 for the corresponding bit operations are obtained. We will also use the 

notation OR, AND, and XOR for the operators∨, ∧, and ⊕, as is done in various 

programming languages. 



 

Defination 7: Bit String 

 

Information is often represented using bit strings, which are lists of zeros and ones. 

When this is done, operations on the bit strings can be used to manipulate this 

information. 

Example 8:  

101010011 is a bit string of length nine. 

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, 

and bitwise XOR of two strings of the same length to be the strings that have as their 

bits the OR, AND, and XOR of the corresponding bits in the two strings, 

respectively. We use the symbols ∨, ∧, and ⊕to represent the bitwise OR, bitwise 

AND, and bitwise XOR operations, respectively. We illustrate bitwise operations on 

bit strings with Example 9. 

Example 9:  

Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 1011 

0110 and11 0001 1101. 

Solution: 

The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by 

taking the OR, AND, and XOR of the corresponding bits, respectively. This gives 

us 



 

 

Homework 1 

Which of these sentences are propositions? What are the truth values of those that 

are propositions? 

a) Boston is the capital of Massachusetts. 

b) Miami is the capital of Florida. 

c) 2+3=5. 

d)5+7=10. 

e) x+2=11. 

Homework 2 

Let p and q be the propositions “The election is decided” and “The votes have been 

counted,” respectively. Express each of these compound propositions as an English 

sentence. 

 


