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It may be seen that as Joule’s law for an ideal gas states u = f(T), then

 cv = 
du

dT
...(8.13)

Since h = u + pv, Boyle’s law, pV = f(T) and Joule’s law u = f(T) together show, h = f(T) and
by similar argument to the above it may be seen that :

cp = 
dh

dT
...(8.14)

Further as h = u + pv, then h = u + RT and by differentiation

dh

dT
 = 

du

dT
 + R

Substitution from eqns. (8.13) and (8.14) gives,
cp = cv + R i.e., cp – cv = R ...(8.15)

If expressed in terms of molar quantities then eqn. (8.15) becomes
Cp – Cv = R0 ...(8.16)

where Cp and Cv are molar specific heat capacities.
Equations for specific heat capacities of ideal gases
Since both u and h are functions of temperature, the equations to cp and cv must also be

functions of temperature. They are usually expressed in a form :
cp = a + KT + K1T

2 + K2 T
3 ...(8.17)

cv = b + KT + K1T2 + K2T3 ...(8.18)
where a, b, K, K1 and K2 are constants. Values of specific enthalpy etc. are then obtained by
integration.

8.6. REAL GASES

It has been observed that when experiments are performed at relatively low pressures and
temperatures most of the real gases obey Boyle’s and Charle’s laws quite closely. But the actual
behaviour of real gases at elevated pressures and at low temperatures deviates considerably.

The ideal gas equation pv = RT can be derived analytically using the kinetic theory of gases
by making the following assumptions :

(i) A finite volume of gas contains large number of molecules.
(ii) The collision of molecules with one another and with the walls of the container are

perfectly elastic.
(iii) The molecules are separated by large distances compared to their own dimensions.
(iv) The molecules do not exert forces on one another except when they collide.
As long as the above assumptions are valid the behaviour of a real gas approaches closely

that of an ideal gas.

8.7. VAN DER WAALS’ EQUATION

Van der Waals’ equation (for a real gas) may be written as :

p
a

v
+�

��
�
��2  (v – b) = RT ...[8.19 (a)]

The constants a and b are specific constants and depend upon the type of the fluid considered,
‘v’ represents the volume per unit mass and R is the gas constant.
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If the volume of one mole is considered then the above equation can be written as

 p
a

v
+�

��
�
��−2  ( )v b−  = R0T ...[8.19 (b)]

The units of p, v , T, R, a and b are as follows :

p (N/m2), v  (m3/kg-mol), T (K) and R = 8314 Nm/kg mol K, a [Nm4/(kg-mol)2], b (m3/kg
mol).

Table 8.1. Constants of Van der Waals’ Equation

S.No. Substance a b
Nm4/(kg-mol)2 m3/kg-mol

1. Hydrogen (H2) 25105 0.0262
2. Oxygen (O2) 139250 0.0314
3. Carbon dioxide (CO2) 362850 0.0423
4. Helium (He) 3417620 0.0228
5. Air 135522 0.0362
6. Water (H2O) vapour 551130 0.0300
7. Mercury (Hg) vapour 2031940 0.0657

Van der Waals equation was proposed in 1873 for the gaseous and liquid states of a fluid,
and accounts qualitatively for many important properties, but quantitatively it fails in many
particulars.

The characteristic equation for a perfect gas is obtained by neglecting the finite size of the
molecules. If this be taken into account it is obvious that the equation must be modified, for the
distance travelled by a molecule between two successive
encounters will be less than if the molecules were point
spheres. Let the average distance traversed by a
molecule between two successive encounters be denoted
by λ, the mean free path. In Fig. 8.6 suppose L and M
to be the two molecules of diameter ‘d’ at a distance λ
apart. If these molecules were to impinge along the line
of centres the path moved over would be less by an
amount ‘d’ than if the molecules were point spheres.
Now all the encounters between molecules are not
direct, so their mean free paths will be lessened by an amount kd, where k is a fraction. That is,

the mean free path is diminished in the ratio (λ – kd) : λ or 1 −�
��

�
��

kd
λ

 : 1.

If the mean free path is lessened in this ratio, the encounters per second will be increased in

the ratio 1 : 1 – 
kd

λ  . But the pressure of the gas depends upon the encounters per second with the

wall of the containing vessel. Hence the new pressure is given by

p = 
1

3
 ρC

2  . 1

1 − kd
λ

...(8.20)

(where ρ is the density and C  is the average velocity).

Fig. 8.6
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The mean free path is inversely proportional to the density of the gas, for if the volume were
halved, i.e., the density doubled, there would be twice as many molecules in the same space, and
therefore any molecule would only have to travel approximately half as far before encountering

another molecule. Hence writing v for 
1

ρ  and 
b
v

 for 
kd

λ
 in eqn. (8.20), we get

 pv 1 −�
��

�
��

b
v  = C

2

3
 = RT

or p(v – b) = RT ...(8.21)
Next consider the forces of cohesion which act between a molecule and those surrounding

it. When the molecule is sufficiently far removed from the surface of the gas in all directions the
resultant of these cohesives forces are equally probable, as the individual forces are varying con-
tinuously as the surrounding molecules change their positions. Hence if the resultant is averaged
over a sufficient length of time the aggregate force will be nil. This is not true, however, when the
molecule is near the surface. Let the force from each molecule be resolved into normal and tangen-
tial components. All directions for the resultant in the tangential plane are equally likely, but the
resultant normal component is most often directed inwards. Averaged over a sufficient length of
time the total resultant force will therefore be a normal force always directed inwards. Thus the
average effect of the cohesive forces is the same as if there was a permanent field of force acting at
and near the surface. This field of force can be regarded as exerting a pressure p1 over the bound-
ary of the gas. The pressure is proportional to the number of molecules per unit area near the
boundary surface and to the normal component of the force. Both of these factors are proportional
to the density, so p1 will be proportional to the square of the density.
i.e., p1 = aρ2 ...(8.22)
where a is a constant.

Hence the molecules are not deflected by impact alone on reaching the boundary, but as the
total result of their impact and of the action of the supposed field of force. That is, their change of
momentum may be supposed to be produced by a total pressure p + p1 instead of by the simple
pressure p.

Hence eqn. (8.21) now becomes :
(p + p1)(v – b) = RT,

or p
a

v
+�

��
�
��2  (v – b) = RT

by substitution from p1 from (8.22) and replacing ρ2 by 
1
2v

 .

Evaluation of constants a and b :
The general form of the isothermals for carbon dioxide given by Van der Waals’ equation is

shown in Fig. 8.7. These curves are obtained from the equation,

p
v

+�
��

�
��

0 00874
2

.
 (v – 0.0023) = 

100646

273

.
 T ...(8.23)

where the unit of pressure is the atmosphere, and the unit of volume that of the gas at 0°C under
one atmosphere pressure.
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Van der Waals’ equation being a cubic in v
has three roots which may be either all real, or two
imaginary and one real, as imaginary roots always
occur in pairs. In Fig. 8.7, the 40°C isothermal
corresponds to the first condition, and the other
isothermals to the latter. There is one isothermal
where there are three real coincident roots at a point
of inflexion. All the isothermals for temperatures
higher than that corresponding to the isothermal
with three real coincident roots have no horizontal
tangent, and all those lower have a maximum and
minimum. Consequently this curve is identified
with the critical isothermal. The temperature of
the critical isothermal is obtained in the following
manner. Equation (8.19) may be written

 v3 – b
RT
p

+
�
��

�
��

 v2 + 
av
p

ab
p

−  = 0 ...(8.24)

 p
a

v
+�

��
�
��2  (v – b) = RT

= pv – pb + 
a

v2  × v – 
a

v2  × b – RT = 0

= pv – pb + 
a
v

ab

v
− 2  – RT = 0

Multiplying both sides by 
v
p

2

 , we get

 pv × v
p

2
 – pb × 

v
p

2

 + 
a
v

 × 
v
p

2
 – 

ab

v2  × 
v
p

2
 – RT

p
v2 = 0

 v3 – b
RT
p

+
�
��

�
��

 v2 + av
p

 – ab
p

 = 0

Now at the critical point, as the three roots are equal, the equation must be of the form :
(v – vc)

3 = 0 ...(8.25)
where the suffix c denotes conditions at the critical point. For the critical point equation (8.24)
becomes

 v3 – b
RT
p

c

c
+

�

��
�

��
 v2 + av

pc
 – ab

pc

 = 0 ...(8.26)

Equations (8.25) and (8.26) are identical, hence equating coefficients

 3vc = b + 
RT
p

c

c
,

 3vc
2 = a

pc
,

Fig. 8.7. Van der Waals’ Isothermal for CO2.
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 vc
3 = ab

pc

,

and from these by a simple reduction, we have

v b

p
a

b

T
a

bR

c

c

c

=

=

=

�

�

	
	
	




	
	
	

3

27
8

27

2

.
 ...(8.27)

From these equations it follows that the critical volume, pressure, and temperature are all
completely determined by the constants of equation (8.19).

The equation (8.27) indicates the critical constants for a particular gas and leads to the
following results :

The values of a and b are also given by

a = 3pc vc
2 = 9

8
 RTc vc = 27

64
 . R T

p
c

c

2 2
...(i)

b = vc

3
 = RT

p
c

c8
 ...(ii)

and  R = 8
3

 p v
T
c c

c
 ...(iii)

Using the values of a, b and R in equation (8.23), and substituting in (8.26), we have for
carbon dioxide

 pc = 61.2 atmospheres,
Tc = 305.3 K or 32.2°C.

It is frequently assumed that the approximate agreement between the calculated and ex-
perimental values of the critical temperature for carbon dioxide is a sufficient verification of Van
der Waals’ theory, but the constant b cannot be calculated with the required degree of accuracy
from Regnault’s experiments to make this an adequate test of the theory.

Also from equations (8.27), we have
p v
RT

c c

c
 = 

3
8

 = 0.375

whereas experiment shows that about 0.27 as the average value of this ratio, varying considerably,
however, from gas to gas.

The Reduced Equation :
When the pressure, volume and temperature of the fluid are expressed as fractions of the

critical pressure, volume and temperature the reduced form of Van der Waals’ equation is ob-
tained. Thus, writing

 p = epc = 
ea

b27 2 ,

v = nvc = 3nb,

T = mTc = 
8
27

.
ma
bR

and substituting these values in eqn. (8.19), this reduces to
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e
n

+�
��

�
��

3
2  (3n – 1) = 8m

In this “reduced” equation the three constants which characterised a particular fluid have
disappeared. The equation is accordingly true of any substance which satisfies an equation of the
Van der Waals type, and the form of the curves connecting e, n and m is the same for all these
substances. Thus we see that two substances, the behaviour of each of which is represented by Van
der Waals’ equation, will be in corresponding states when the pressure, volume and temperature
are the same multiples of their critical values.

This theorem of corresponding states, enunciated by Van der Waals, was tested by Amagat
and found to be approximately true for a large number of fluids. The theorem of corresponding
states is not unique to the equation of Van der Waals. Any equation of state giving a critical point
and having not more than three constants will serve equally well to give a reduced equation, in
which the constants peculiar to any one fluid disappear, and therefore become the basis of the
theorem of corresponding states.

It must be remembered in applying the theorem that the accuracy of results deduced by its
aid cannot be greater than the accuracy with which the original equation represents the behav-
iour of the fluids under consideration.

Amagat’s Experiments
As per Amagat’s experiments Van der Waals’ equation accounts for the variation of the

product pv with increasing pressure as follows.
Writing equation (8.19) in the form

 pv = RTv
v b

a
v−

−  ,

and differentiating with respect to p, keeping T constant, we have

d pv
dp T

( )�
��

�
��

 = 
a
v

RTb
v b2 2−

−
�
�



�
�

( )

 
dv
dp T

�
��
�
��

...(8.28)

Since the condition for a minimum on any isothermal is

d pv
dp T

( )�
��

�
��

 = 0,

the right-hand side of equation (8.28) must vanish at this point. Now 
dv
dp T

�
��
�
��

 is never zero, so we

have as the condition for a minimum :

RTb

v b( )− 2  = 
a

v2  or RT . 
b
a

 = 1
2

−�
��

�
��

b
v

...(8.29)

This equation shows that the volume at which the minimum value of pv occurs on any
isothermal gradually increases as the temperature is raised.

To find the locus of minima the temperature T must be eliminated from equation (8.29) by
substitution from the original equation. Thus from equation (8.19)

RT = p
a

v
+�

��
�
��2  (v – b),

and substituting this in equation (8.28), we have
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b
a

 p
a

v
+�

��
�
��2  (v – b) = 1

2

−�
��

�
��

b
v

,

which reduces to v = b 
pv
a

2
2+

�

�
�

�

�
�

Multiply each side of this equation by p, and put pv = y and p = x, and we obtain

 y = b 
y
a

x
2

2+
�

�
�

�

�
�  or y(a – by) = 2abx

The above expression gives the locus of minima and is
a  parabola  with  axis  parallel  to  the  x-axis  as shown in
Fig. 8.8.

Consider the isothermal which goes through the point

A. Here x = 0 and y = 
a
b

.

Writing Van der Waals’ equation in terms of x and y,
we have

1 2+
�

��
�

��
ax

y  (y – bx) = RT,

and substituting the coordinates of the point A

RT = 
a
b

or   T = 
a

bR
...(8.30)

For temperatures above that given by equation (8.30) the minima lie in the region of nega-

tive pressure, so an Amagat isothermal for a temperature equal to or greater than 
a

bR
 will slope

upwards along its whole length for increasing values of p, but for a temperature less than 
a

bR
 the

isothermals first dip to a minimum and then rise.
Using the result from equation (8.27)

Tc = 
8
27

 
a

bR
,

we see that the limiting temperature for an isothermal to show a minimum is

T = 
27
8

 . Tc

The reason for Amagat finding no dip in the isothermals for hydrogen is now apparent. The
critical temperature is 35 K, and therefore the limiting temperature above which minima do not

occur is 
27
8

 × 35 = 118.1 K or – 155°C, and all Amagat’s experiments were conducted between 0°C

and 100°C.
The Cooling effect :
The most gases show an inversion of the cooling effect at a certain temperature. The equa-

tion of Van der Waals indicates at what temperature this occurs.

Fig. 8.8
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We have

p
a

v
+�

��
�
��2  (v – b) = RT [From eqn. (8.15)]

Keeping p constant and differentiating with respect to T, we get

p
a

v

ab

v
− +�

�



�
�

2 3

2 dv
dT p

�
��

�
��  = R

or dv
dT p

�
��

�
��

 = 
R

p
a
v

ab
v

− +�
�



�
�

2 3

2

Substituting this value of 
dv
dT p

�
��

�
��

in the equation cpµ = T 
dv
dT p

�
��

�
��  – v (where µ is a measure

of cooling effect), we get

 cpµ = 
RT

p
a
v

ab
v

− +�
�



�
�

2 3

2
 – v

and substituting for RT from equation (8.19) this reduces to

cpµ = 
− + −

− +

bp
a
v

ab
v

p
a
v

ab
v

2 3

2
2

2 3

The denominator of this expression is always positive, since it is R 
dT
dv p

�
��

�
��

. Hence the

cooling effect, µ, is positive if

 bp < 
2a
v

 – 
3

2
ab
v

...(8.31)

and negative if

 bp > 
2a
v

 – 
3

2
ab
v

...(8.32)

and inversion occurs when

 bp = 
2a
v

 – 
3

2
ab
v

or  p = 
a
b  2 3

2v
b

v
−�

��
�
��

...(8.33)

In order to get the temperature of inversion this equation must be combined with the origi-
nal equation. Thus

2a
b  1

2

−�
��

�
��

b
v

 = RT ...(8.34)

Since v is necessarily always greater than b, it will be seen that as v increases so also does
the temperature of inversion.
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p

v
Cooling

Heating

3b
2

The form of curve given by equation (8.33) is shown in

Fig. 8.9. The pressure is zero when v = 
3
2
b

, or infinity. These

values of v determine the limiting values of the temperature of
inversion, as it is only between these limits that p is positive.
Substituting these limits of v in equation (8.34) the limiting val-

ues of the temperature of inversion are 
2
9

a
bR   and 

2a
bR  , or from

(8.27), 3
4

Tc and 
27
4

Tc.

The equation (8.33) being quadratic there are two values
of v for a constant value of p at which inversion occurs, as may
also be seen by reference to Fig. 8.9. Consequently by equation (8.34) there are two temperatures
for a constant value of p at which inversion occurs. As the temperature increases through the
lower of these values the change is from a heating to a cooling effect, and as it increases through
the higher of these values the change is from a cooling to a heating effect.

The inversion will occur when the maximum value of p is a
b3 2 , when v = 3b. For any value

of p less than this there is a cooling effect provided the condition of the substance is represented by
a point inside the area enclosed by the curve and the axis of volume, Fig. 8.9, and for any greater
value of p there is a heating effect as indicated by equations (8.31) and (8.32) respectively.

Let us take the case of hydrogen. In the experiments of Joule and Thomson the pressure
used was 4.7 atmospheres. The critical temperature and pressure are 35 K and 15 atmospheres.

From equation (8.33) we can find the values of 
b
v

 corresponding to the pressure used by Joule and

Thomson, and by substitution in equation (8.34) find the two temperatures at which inversion
occurs at this pressure. Equation (8.33) can be written as :

p = 27pc 2 3
2b

v
b
v

− �
��
�
��

�

�
�
�

�

�
�
�

Hence
b
v

 = 

2 4
12
27

6

± − p
pc  = 0.6608 or 0.0058

by substitution of the above values for p and pc.
Writing equation (8.34) in the form

T = 
27
4

 Tc 1
2

−�
��

�
��

b
v

,

we have by substitution for 
b
v

 : T = 233.5 K or 27.2 K

Fig. 8.9
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that is, below – 245.9°C there would be a heating effect, between – 245.9°C and – 39.6°C a cooling
effect, and above – 39.6°C a heating effect. Thus Van der Waals’ equation qualitatively ac-
counts for the heating effect observed at ordinary temperatures.

Limitations of Van der Waals’ Equation
Van der Waals’ equation under actual condition becomes invalid as discussed below :
— The values of a and b (which are assumed to be constant) are found to vary with tem-

perature. Thus the results obtained from the equation are incorrect when the variation
of a and b is large with respect to temperature.

— The equation is not accurate enough in the critical region and it is also obvious from its
derivation.

8.8. VIRIAL EQUATION OF STATE

The virial (a Latin word used for force which refers to interaction forces between molecules)
equation of state may be expressed as follows :

pv
RT

 = A0 + A1p + A2p2 + A3p
3 + ....... ...(8.35)

or
pv

RT
 = B0 + 

B
v
1  + 

B

v
2
2  + 

B

v
3
3 + ...... ...(8.36)

where A0, A1, ... and B0, B1, ... are called the virial co-efficients which are functions of temperature
only.

— The virial equation can be used only for gases at low and medium densities.
— The advantage of virial equation is that the virial co-efficients can be determined from

experimental p-v-T data.

8.9. BEATTIE-BRIDGEMAN EQUATION

Beattie-Bridgeman equation is expressed as follows :

 p = 
R T e

v
0

2
1( )

( )

−
 ( )v B+  – 

A

v( )2 ...(8.37)

where p = pressure

A = A0 1 −�
��

�
��

a
v

B = B0 1 −�
��

�
��

b
v

and e = 
c

vT 3

The factors A0, a, B0, b and c are constants whose values for different gases are given in
Table 8.2.

— This equation is normally used for substances at pressures less than critical pressure.
— The equation is accurate enough when the volumes involved are greater than twice the

critical volume.
— The equation fits the data of fourteen gases down to the critical point and over a wide

range of pressure within ± 0.5% error. However, it is inaccurate near critical point.
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Table 8.2. Constants of the Beattie-Bridgeman Equation of State

Gas A0 a B0 b c × 10–4

Hydrogen (H2) 20.0117 – 0.00506 0.02096 – 0.04359 0.0504
Oxygen (O2) 151.0857 0.02562 0.04624 0.004208 4.80
Carbon dioxide (CO2) 507.2836 0.07132 0.10476 0.07235 66.0
Helium (He) 2.1886 0.05984 0.01400 0.0 0.0040
Air 131.8441 0.01931 0.04611 – 0.001101 4.34
Nitrogen 136.2315 0.02617 0.05046 – 0.00691 4.20
Argon 130.7802 0.02328 0.03931 0.0 5.99

8.10. REDUCED PROPERTIES

The ratios of pressure, temperature and specific volume of a real gas to the corresponding
critical values are called the reduced properties.

 pr = p
pc

 , Tr = 
T
Tc

 , vr = 
v
vc

...(8.38)

Table 8.3. Critical Constants

Substance Pressure (pc ) bar Temperature (Tc)
K

Air 37.69 132.5
Argon 48.64 151.0
Carbon dioxide 73.86 304.2
Carbon monoxide 34.96 133.0
Helium 2.29 5.3
Hydrogen 12.97 33.3
Nitrogen 33.94 126.2
Oxygen 50.76 154.8
Water 228.59 647.15
Ethane 48.84 305.5
Ethylene 51.17 282.4
Methane 46.41 191.1
Propane 42.55 370.0

Table 8.4. Properties of Gases

Gas Molecular cp cv R = cp – cv
γ =

c

c
p

v
Z

p v
R Tc

c

c
=

0
weight (kJ/kg K) (kJ/kg K) (kJ/kg K)

(M)

Air 28.97 1.005 0.718 0.287 1.4 0.284
Oxygen 32 0.920 0.660 0.260 1.4 0.307
Nitrogen 28 1.046 0.754 0.292 1.39 0.291
Hydrogen 2 14.40 10.40 4.0 1.38 0.304
Carbon monoxide 28 1.046 0.754 0.292 1.39 —
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Carbon dioxide 44 0.840 0.650 0.190 1.3 0.274
Water 18 — — 0.462 — 0.230
Methane 16 2.22 1.70 0.520 1.3 —
Sulphur dioxide 64 0.796 0.67 0.126 1.19 0.268
Ammonia 17 — — 0.488 — —

8.11. LAW OF CORRESPONDING STATES

If any two gases have equal values of reduced pressure and reduced temperature, then
they have same values of reduced volume ; i.e., vR = f(Tr , pr) for all gases and the function is the
same.

This law is most accurate in the vicinity of the critical point.

8.12. COMPRESSIBILITY CHART

The compressibility factor (Z) of any gas is a function of only two properties, usually tem-
perature and pressure, so that Z = f(Tr, pr) except near the critical point. The value of Z for any real
gas may be less or more than unity, depending on pressure and temperature conditions of the gas.

The general compressibility chart is plotted with Z versus pr for various values of Tr. This
is constructed by plotting the known data of one or more gases and can be used for any gas. Such
a chart is shown in Fig. 8.10. This chart gives best results for the regions well removed from the
critical state for all gases.

Reduced pressure pr

Z
 =

 p
v/

R
T

0.2

0.4
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0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 100

2.0

1.6
1.4

1.2

T = 1.0r

5.0
3.0

Fig. 8.10. Generalised compressibility chart.

IDEAL GASES

Example 8.1. The volume of a high altitude chamber is 40 m3. It is put into operation by
reducing pressure from 1 bar to 0.4 bar and temperature from 25°C to 5°C.

How many kg of air must be removed from the chamber during the process ? Express this
mass as a volume measured at 1 bar and 25°C.

Take R = 287 J/kg K for air.
Solution. V1 = 40 m3 V2 = 40 m3

 p1 = 1 bar p2 = 0.4 bar
T1 = 25 + 273 = 298 K T2 = 5 + 273 = 278 K

kg of air to be removed :
Assuming nitrogen to be a perfect gas,
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 p1V1 = m1RT1
or m

p V
RT1

1 1

1
=

�

��
�

��

 p2V2 = m2RT2
or m

p V
RT2

2 2

2
=

�

��
�

��

Mass of air removed during the process = (m1–m2) kg

(m1–m2) = 
p V
RT

p V
RT

1 1

1

2 2

2
−

= 
1
R

 
p V
T

p V
T

1 1

1

2 2

2
−

�

��
�

��
 = 

1
287

 
( ) ( . )1 10 40

298
0 4 10 40

278

5 5× × − × ×�

�
�
�

�

�
�
�

 = 26.71 kg. (Ans.)
Volume of this mass of gas at 1 bar and 25°C is given by

V = 
mRT

p
 = 

2671 287

1 105
. × ×

×
298

 = 22.84 m3. (Ans.)

Example 8.2. A steel flask of 0.04 m3 capacity is to be used to store nitrogen at 120 bar,
20°C. The flask is to be protected against excessive pressure by a fusible plug which will melt and
allow the gas to escape if the temperature rises too high.

(i) How many kg of nitrogen will the flask hold at the designed conditions ?
(ii) At what temperature must the fusible plug melt in order to limit the pressure of a full

flask to a maximum of 150 bar ?
Solution. Capacity of the steel flask, V = 0.04 m3

Pressure, p = 120 bar
Temperature, T = 20 + 273 = 293 K

(i) kg of nitrogen the flask can hold :
Now, R for nitrogen (molecular weight, M = 28)

= 
R
M

0  = 
8314

28
 = 296.9 J/kg K

Assuming nitrogen to be a perfect gas, we get
Mass of nitrogen in the flask at designed condition

= m = 
pV
RT

 = 
120 10 0 04

296 9 293

5× ×
×

.
.  = 5.51 kg. (Ans.)

(ii) Temperature at which fusible plug should melt, t :
When the fusible plug is about to melt

 p = 150 bar ; V = 0.04 m3 ; m = 5.51 kg
Therefore, temperature t at which fusible plug must melt is given by

T = 
pV
mR

 = 
150 10 0 04

551 296 9

5× ×
×

.
. .  = 366.7 K

∴ t = 366.7 – 273 = 93.7°C. (Ans.)
Example 8.3. A balloon of spherical shape 6 m in diameter is filled with hydrogen gas at

a pressure of 1 bar abs. and 20°C. At a later time, the pressure of gas is 94 per cent of its original
pressure at the same temperature :
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(i) What mass of original gas must have escaped if the dimensions of the balloon is not
changed ?

(ii) Find the amount of heat to be removed to cause the same drop in pressure at constant
volume.

Solution. Diameter of the spherical balloon = 6 m
Pressure of hydrogen gas, p1 = 1 bar abs.
Temperature of hydrogen gas, T1 = 20°C or 293 K
At a later time pressure of the gas, p2 = 0.94p1 at 293 K.
(i) Mass of original gas escaped :

     ∆m = m1 – m2
[where m1 and m2 are the initial and final masses of the gas]

= 
p V
RT

1 1

1
 = 

p V
RT

2 2

2
= 

V
RT

1

1
 (p1 – p2)  [� V1 = V2, T1 = T2 and p2 = 0.94p1]

 = 
V

RT
1

1
 (p1 – 0.94p1) = 

p V
RT

1 1

1
 (1 – 0.94)

∴ %age mass escaped = ∆m
m1

 × 100

= 

p V
RT

p V
RT

1 1

1

1 1

1

1 0 94( . )−
 = 6%. (Ans.)

(ii) Amount of heat to be removed :
Using the gas equation,

p V
T
1 1

1
 = 

p V
T
2 2

2

or
p
T

1

1
 = 

0 94 1

2

. p
T

(� V1 = V2 and p2 = 0.94p1)

∴ T2 = 0.94T1 = 0.94 × 293 = 275.4 K or 2.42°C
The heat to be removed is given by

Q = mcv(T1 – T2)

where m = 
p V
RT

1 1

1
 = 

1 10
4
3

3

8314
2

293

5 3× × ×

×

π
 = 9.28 kg

� MR

R

M H

=

∴ =

=

�

�

�
�
�
�

�

�

�
�
�
�

8314
8314

2
22as for

cv = 10400 J/kg K for H2

∴  Q (heat to be removed) = 9.28 × 10400 (293 – 275.4) = 1.69 MJ. (Ans.)
Example 8.4. A vessel of capacity 3 m3 contains 1 kg mole of N2 at 90°C.
(i) Calculate pressure and the specific volume of the gas.

(ii) If the ratio of specific heats is 1.4, evaluate the values of cp and cv.
(iii) Subsequently, the gas cools to the atmospheric temperature of 20°C ; evaluate the final

pressure of gas.
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(iv) Evaluate the increase in specific internal energy, the increase in specific enthalpy, increase
in specific entropy and magnitude and sign of heat transfer.

Solution. Mass of N2, m = 1 kg mole i.e., 28 kg
Capacity of the vessel, V1 = 3 m3

Temperature, T1 = 90 + 273 = 363 K
(i) Pressure (p1) and specific volume (v1) of the gas :

Using the relation
p1V1 = mRT1

 p1 × 3 = 28 × 
8314

28
�
��

�
��  × 363 � R

R
M

= =�

��
�

��
0 8314

28
∴  p1 = 1005994 J/m2 or 10.06 bar. (Ans.)

Specific volume,  v1 = 
V
m

1  = 
3
28

 = 0.107 m3/kg. (Ans.)

(ii) cp = ?, cv = ?

c

c
p

v
 = 1.4 (given) ...(i)

But  cp – cv = R = 
8314

28
...(ii)

Solving for cp and cv between (i) and (ii)
cp = 1.039 kJ/kg K ;  cv = 0.742 kJ/kg K. (Ans.)

(iii) Final pressure of the gas after cooling to 20°C :
Initially  After cooling

p1 = 10.06 bar p2 = ?
V1 = 3 m3 V2 = 3 m3

T1 = 363 K T2 = 20 + 273 = 293 K

Now,
p V
T
1 1

1
 = 

p V
T
2 2

2

or
p
T

1

1
 = 

p
T

2

2
(as V1 = V2)

∴ p2 = p T
T
1 2

1
 = 10 06 293

363
. ×  = 8.12 bar. (Ans.)

(iv) ∆u, ∆h, ∆s, Q :
For a perfect gas,
Increase in specific internal energy

∆u = cv(T2 – T1) = 0.742(293 – 363) = – 51.94 kJ/kg. (Ans.)
Increase in specific enthalpy,

∆h = cp(T2 – T1) = 1.039(293 – 363) = – 72.73 kJ/kg. (Ans.)
Increase in specific entropy,

    ∆s = cv loge 
T
T

2

1

�

��
�

��
 + R loge 

v
v

2

1

�

��
�

��



396 ENGINEERING THERMODYNAMICS

dharm
\M-therm\Th8-2.pm5

But v1 = v2

∴ ∆ s = cv loge 
T
T

2

1

�

��
�

��
 = 0.742 loge 

293
363
�
��

�
��

 = – 0.1589 kJ/kg K. (Ans.)

Now, Q = ∆u + W
Here W = 0 as change in volume is zero
∴ Q = ∆u
∴ Heat transfer,    Q = – 51.94 kJ/kg = – 51.94 × 28 = – 1454.32 kJ. (Ans.)
Example 8.5. (a) 1 kg of air at a pressure of 8 bar and a temperature of 100°C undergoes

a reversible polytropic process following the law pv1.2 = constant. If the final pressure is 1.8 bar
determine :

(i) The final specific volume, temperature and increase in entropy ;
(ii) The work done and the heat transfer.
Assume R = 0.287 kJ/kg K and γ = 1.4.
(b) Repeat (a) assuming the process to be irreversible and adiabatic between end states.
Solution. (a) Mass of air,    m = 1 kg
Pressure, p1 = 8 bar
Temperature, T1 = 100 + 273 = 373 K
The law followed : pv1.2 = constant
Final pressure,  p2 = 1.8 bar
Characteristic gas constant, R = 0.287 kJ/kg K
Ratio of specific heats, γ = 1.4
(i) v2, T2 and ∆s :

Assuming air to be a perfect gas,
p1v1 = RT1

∴ v1 = 
RT
p

1

1
 = 

( . )0 287 1000 373

8 105
× ×

×
 = 0.1338 m3/kg

Also, p1v1
1.2 = p2v2

1.2

or
v
v

2

1
 = 

p
p

1

2

1 1 2
�

��
�

��

/ .

or v2 = v1 
p
p

1

2

1 1 2
�

��
�

��

/ .

 = 0.1338 
8

18

1 1 2

.

/ .
�
��
�
��  = 0.4637 m3/kg

i.e., Final specific volume, v2 = 0.4637 m3/kg. (Ans.)
Again, p2v2 = RT2

T2 = 
p v
R
2 2  = 

18 10 0 4637
0 287 1000

5. .
( . )

× ×
×  = 290.8 K

i.e., Final temperature, t2 = 290.8 – 273 = 17.8°C. (Ans.)
Increase in entropy ∆s is given by,

∆s = cv loge 
T
T

2

1

�

��
�

��
 + R loge 

v
v

2

1

�

��
�

��
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But γ = 
c

c
p

v
 = 1.4  (given) ...(i)

and cp – cv = R (= 0.287 kJ/kg K for air) ...(ii)
Solving for cv between (i) and (ii),

cv = 0.717 kJ/kg K

∴ ∆ s = 0.717 loge 
290 8
373

.�
��

�
��

 + 0.287 loge 
0 4637
01338
.
.

�
��

�
��

= – 0.1785 + 0.3567 = 0.1782 kJ/kg K
i.e., Increase in entropy,    ∆s = 0.1782 kJ/kg K. (Ans.)

(ii) Work done and heat transfer :
The work done in a polytropic process is given by,

W = 
p v p v

n
1 1 2 2

1
−
−  = 

R T T
n

( )1 2

1
−
−

 = 
0 287 373 290 8

12 1
. ( . )

( . )
−

−  = 117.96 kJ/kg

i.e., Work done = 117.96 kJ/kg. (Ans.)
Heat transfer, Q = ∆u + W

where ∆u = cv(T2 – T1)
= 0.717 (290.8 – 373) = – 58.94 kJ/kg

∴ Q = – 58.94 + 117.96 = 59.02 kJ/kg
Hence heat transfer = 59.02 kJ/kg. (Ans.)
(b) (i) Though the process is assumed now to be irreversible and adiabatic, the end states are

given to be the same as in (a). Therefore, all the properties at the end of the process are the
same as in (a). (Ans.)

(ii) As the process is adiabatic, Q (heat transfer) = 0. (Ans.)
∆u = ∆u in (a)

Applying first law for this process
Q = ∆u + W
0 = ∆u + W

or W = – ∆u
= – (– 58.94) = 58.94

∴  Work done = 58.94 kJ/kg. (Ans.)
Example 8.6. Two spheres each 2.5 m in diameter are connected to each other by a pipe

with a valve as shown in Fig. 8.11. One sphere contains 16 kg of air and other 8 kg of air when the
valve is closed. The temperature of air in both sphere is 25°C. The valve is opened and the whole
system is allowed to come to equilibrium conditions. Assuming there is no loss or gain of energy,
determine the pressure in the spheres when the system attains equilibrium.

Neglect the volume of the pipe.

Solution. Volume of each sphere = 
4
3

 πR3 = 
4
3

 π × 
25
2

3
.�

��
�
�� = 8.18 m3
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Spheres

1 2

2.5 m 2.5 m

Fig. 8.11

The temperature in both spheres is same (25°C)
i.e., T1 = T2 = 25 + 273 = 298 K

As no energy exchange occurs, the temperature reached after equilibrium is 298 K.
Mass of air in sphere 1, m1 = 16 kg
Mass of air in sphere 2, m2 = 8 kg
After opening the valve
Total volume, V = 8.18 + 8.18 = 16.36 m3

Total mass, m = m1 + m2 = 16 + 8 = 24 kg
Now using characteristic gas equation

pV = mRT

∴ p = mRT
V

 = 24 287 298
16 36

× ×
.

 = 1.255 × 105 N/m2 or 1.255 bar

Hence pressure in the spheres when the system attains equilibrium
= 1.255 bar. (Ans.)

Example 8.7. CO2 flows at a pressure of 10 bar and 180°C into a turbine, located in a
chemical plant, and there it expands reversibly and adibatically to a final pressure of 1.05 bar.
Calculate the final specific volume, temperature and increase in entropy. Neglect changes in
velocity and elevation.

If the mass flow rate is 6.5 kg/min. evaluate the heat transfer rate from the gas and the
power delivered by the turbine.

Assume CO2 to be a perfect gas and cv = 0.837 kJ/kg K.
Solution. At entry to turbine At exit of turbine

Pressure,    p1 = 10 bar     Pressure, p2 = 1.05 bar
Temperature, T1 = 180 + 273 = 453 K

Since the expansion is reversible and adiabatic, therefore, the equation pvγ = constant is
applicable.

∴ p1v1
γ = p2v2

γ ...(i)
Eliminating v1 and v2 using the perfect gas equation

v = 
RT

p

We can write equation (i) as

T
T

1

2
 = p

p
1

2

1
�

��
�

��

−( )/γ γ
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∴
453

2T
 = 10

105

1

.

( )/
�
��

�
��

−γ γ

cv = 0.837 kJ/kg K  (given)

  R = 
R
M

0  = 
8314

44
.

  (Molecular weight of CO2 = 44)

= 0.1889 kJ/kg K
Also cp – cv = R
∴ cp – 0.837 = 0.1889

cp = 1.0259 kJ/kg K

∴ γ  = 
c

c
p

v
 = 

10259
0 837
.
.

 = 1.23

Substituting for γ in equation (ii)

453

2T
 = 10

1 05

1 23 1 1 23

.

( . )/ .
�
��

�
��

−

∴ T2 = 297 K
Final temperature = 297 – 273 = 24°C. (Ans.)

p2v2 = RT2
∴ 1.05 × 105 × v2 = (0.1889 × 1000) × 297

∴ v2 = 
( . )

.

01889 1000 297

105 105
× ×

×  = 0.5343 m3/kg

i.e., Final specific volume       = 0.5343 m3/kg. (Ans.)
As the process is reversible and adiabatic

∆s = 0
i.e., Increase in entropy = 0. (Ans.)

Since the process is adiabatic, therefore, heat transfer rate from turbine = 0. (Ans.)
Applying steady flow energy equation (S.F.E.E.) on unit time basis,

� �m h
C

Z Q1
1
2

12
+ +

�

�
�
�

�

�
�
�

+  = �m h
C

Z W2
2

2

22
+ +

�

�
�
�

�

�
�
�

+

By data changes in velocity and elevation are negligible, and Q = 0.
∴ S.F.E.E. reduces to

i.e., W = �m (h1 – h2)

= �m cp(T1 – T2) as
dh
dT

c h h c T Tp p= − = −�

��
�

��
, ( )1 2 1 2

= 
6 5
60
.

 × 1.0259 (453 – 297) = 17.34 kW

Hence power delivered by the turbine = 17.34 kW. (Ans.)
Example 8.8. A certain quantity of air initially at a pressure of 8 bar and 280°C has a

volume of 0.035 m3. It undergoes the following processes in the following sequence in a cycle :
(a) Expands at constant pressure to 0.1 m3,
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(b) Follows polytropic process with n = 1.4, and
(c) A constant temperature process (which completes the cycle).
Evaluate the following :
(i) The heat received in the cycle ;

(ii) The heat rejected in the cycle ;
(iii) Efficiency of the cycle.
Solution. Fig. 8.12 shows the cycle on p-V and T-s planes.

p(Pressure)

V(Volume)

p = Constant1 2

3

pV = Const.
n

pV = Const.

T(Temp.)

s (Entropy)

T = Const.
1

2

3

pV = Const.
n

p = Const.

Fig. 8.12

Pressure, p1 = 8 bar
Volume, V1 = 0.035 m3

Temperature, T1 = 280 + 273 = 553 K
Pressure, p2 = 8 bar (= p1)
Volume, V2 = 0.1 m3

Index, n = 1.4
To find mass of air, use the relation

p1V1 = mRT1

∴ m = 
p V
RT

1 1

1
 = 

8 10 0 035
287 553

5× ×
×

.
 = 0.1764 kg

From p2V2 = mRT2

T2 = 
p V
mR
2 2  = 

8 10 01
01764 287

5× ×
×

.
.  = 1580 K

Also, p2V2
1.4 = p3V3

1.4

and
T
T

2

3
 = 

p
p

2

3

1 4 1 1 4
�

��
�

��

−( . )/ .

But T3 = T1 as 1 and 3 are on an isothermal line.

∴ 1580
553

 = 8

3

0 4 1 4

p

�

��
�

��

. / .
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2.857 = 
8

3

0 2857

p

�

��
�

��

.

p3 = 
8

2 857 1 0 2857( . ) / .  = 
8

2 857 3 5( . ) .  = 0.2 bar

Now, p3V3 = mRT3

∴ 0.2 × 105 × V3 = 0.1764 × 287 × 553

∴  V3 = 
01764 287 553

0 2 105
.

.

× ×
×

 = 1.399 m3

(i) The heat received in the cycle :
Applying first law to the constant pressure process 1-2,

Q = ∆U + W

W = pdV
1

2

� (as the process is reversible)

= p(V2 – V1)
= 8 × 105 (0.1 – 0.035)
= 52000 J or 52 kJ (work done by air)

∴ Q = m × cv(T2 – T1) + 52
= 0.1764 × 0.71(1580 – 553) + 52 = 180.6 kJ

i.e., Heat received = 180.6 kJ
Applying first law to reversible polytropic process 2-3

Q = ∆U + W

But W = 
p V p V

n
2 2 3 3

1
−
−  = 

mR T T
n
( )2 3

1
−

−

= 
01764 0 287 1580 553

14 1
. . ( )

.
× −

−
 = 129.98 kJ (work done by air)

∴ Q = mcv(T3 – T2) + 129.98
= 0.1764 × 0.71 (553 – 1580) + 129.98
= – 128.6 + 129.98 = 1.354 kJ (heat received)

∴ Total heat received in the cycle = 180.6 + 1.354 = 181.954 kJ. (Ans.)
(ii) The heat rejected in the cycle :
Applying first law to reversible isothermal process 3-1,

Q = ∆U + W

W = p3V3 loge 
V
V

1

3

�

��
�

��

= 0.2 × 105 × 1.399 × loge 
0 035
1399
.
.
�
��

�
��

 × 10–3

= – 103.19 kJ (work done on the air)
∴ Q = mcv(T1 – T3) + W

= 0 – 103.19 = – 103.19 kJ (� T1 = T3)
Hence heat rejected in the cycle = 103.19 kJ. (Ans.)
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(ii) Efficiency of the cycle, ηcycle :

ηcycle = 
Heat received Heat rejected

Heat received
−

= 
181954 10319

181 954
. .

.
−

 = 0.433 or 43.3%

i.e.,     Efficiency of the cycle = 43.3%. (Ans.)

REAL GASES

Example 8.9. One kg of CO2 has a volume of 1 m3 at 100°C. Compute the pressure by
(i) Van der Waals’ equation

(ii) Perfect gas equation.
Solution. (i) Using Van der Waals’ equation :

Molar specific volume,  v  = 1 × 44 = 44 m3/kg-mol (� M for CO2 = 44)
Temperature, T = 100 + 273 = 373 K
The values of a and b for CO2 (from Table 8.1)

a = 362850 Nm4/(kg-mol)2

and b = 0.0423 m3/kg-mol
R0 = 8314 Nm/kg-mol K

Van der Waals’ equation is written as

p
a

v
+�

��
�
��2  ( )v b−  = R0T

or p = 
R T
v b

a

v
0

2−
−

�
��

�
��

Substituting the values in the above equation, we get

∴ p = 
8314 373
44 0 0423

×
− .

– 
362850

442

 = 70548 – 187 = 70361 N/m2 or 0.7036 bar. (Ans.)
(ii) Using perfect gas equation :

pv  = R0T

∴ p = 
R T

v
0  = 

8314 373
44

×
 = 70480 N/m2 or 0.7048 bar. (Ans.)

Example 8.10. A container of 3 m3 capacity contains 10 kg of CO2 at 27°C. Estimate the
pressure exerted by CO2 by using :

(i) Perfect gas equation
(ii) Van der Waals’ equation

(iii) Beattie Bridgeman equation.
Solution. Capacity of the container, V = 3 m3

Mass of CO2, m = 10 kg
Temperature of CO2, T = 27 + 273 = 300 K
Pressure exerted by CO2, p :
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(i) Using perfect gas equation :

Characteristic gas constant, R = 
R
M

0  = 
8314
44

 = 188.95 Nm/kg K (for CO2)

Using perfect gas equation
pV = mRT

∴ p = 
mRT

V
 = 

10
3

× ×188 95 300.

 = 188950 N/m2 or 1.889 bar. (Ans.)
(ii) Using Van der Waals’ equation :

p
a

v
+�

��
�
��2

 ( )v b−  = R0T

p = 
R T
v b

0

−
– 

a

v2

From Table 8.1
For CO2 :  a = 362850 Nm4/(kg-mol)2

b = 0.0423 m3/(kg-mol)

v  = Molar specific volume = 
3 44

10
×

 = 13.2 m3/kg-mol

Now substituting the values in the above equation, we get

p = 
8314 300

13 2 0 0423
×

−. .
 – 

362850

13 2 2( . )
                    = 189562 – 2082.5 = 187479.5 N/m2 or 1.875 bar. (Ans.)

(iii) Using Beattie Bridgeman equation :

 p = 
R T e

v
0

2
1( )

( )

−
 ( )v B

A

v
+ − 2

where p = pressure, A = A0 1 −�
��

�
��

a
v

, B = B0 1 −�
��

�
��

b
v

 and e = 
c

vT3

From Table 8.2 A0 = 507.2836, a = 0.07132
B0 = 0.10476,  b = 0.07235
 C = 66 × 104

∴  A = 507.2836 1
0 07132

13 2
−�

��
�
��

.
.

 = 504.5

 B = 0.10476 1
0 07235

13 2
−�

��
�
��

.
.  = 0.1042

C = 
66 10

13 2 300

4

3
×

×. ( )
 = 0.001852

Now substituting the various values in the above equation, we get

 p = 
8314 300 1 0 001852

13 2 2
× −( . )

( . )
 (13.2 + 0.1042) – 

504 5

13 2 2
.

( . )

= 190093 – 2.89 ~_  1.9 × 105 N/m2 = 1.9 bar. (Ans.)
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Example 8.11. One kg-mol of oxygen undergoes a reversible non-flow isothermal compres-
sion and the volume decreases from 0.2 m3/kg to 0.08 m3/kg and the initial temperature is 60°C.
If the gas obeys Van der Waals’ equation find :

(i) The work done during the process (ii) The final pressure.
Solution. The Van der Waals’ equation is written as

p
a

v
+�

��
�
��2  ( )v b−  = R0T

where p = pressure of the gas ; a, b = constants ; v  = molar volume ; R0 = universal gas constant
From Table 8.1
For O2 : a = 139250 Nm4/(kg-mol)2

b = 0.0314 m3/kg-mol
and R0 = 8314 Nm/kg-mol K

v1  = 0.2 × 32 = 6.4 m3/kg-mol

v2  = 0.08 × 32 = 2.56 m3/kg-mol.
(i) Work done during the process :

The work done per kg mole of O2 is given by

W = p dv.
1

2

�  = 
R T
v b

a

v
dv0

21

2

−
�
��

�
��

−
�

�
�
�

�

�
�
��

= R T v be
v

v

0

1

2

log ( )−
�

�
�
�

�

�
�
�

 + 
a
v v

v
�
��
�
��

1

2

= R T
v b
v be0

2

1
log

−
−

�

��
�

��
�

�
�
�

�

�
�
�

 + a
v v
1 1

2 1
−

�

��
�

��
�

�
�
�

�

�
�
�

= 8314 × (60 + 273) log
. .
. .e

2 56 0 0314
6 4 0 0314

−
−

�
��

�
��

�

�
�
�

�

�
�
�

 + 139250
1

256
1

6 4. .
−�

��
�
��

�

�
�

�

�
�

= – 2557359 + 32636 = – 2524723 Nm/kg-mol. (Ans.)
(ii) The final pressure, p2 :

p2 = 
R T

v b
a

v
0

2 2
2−

−

= 
8314 333

2 56 0 0314
139250

2 56 2
×

−
−

. . ( . )
 = 1073651 N/m2 or 10.73 bar. (Ans.)

Example 8.12. If the values for reduced pressure and compressibility factor for ethylene
are 20 and 1.25 respectively, compute the temperature.

Solution. Reduced pressure, pr = 20
Compressibility factor, Z = 1.25
Temperature, T = ?
From the generalised compressibility chart on Z – pr co-ordinates corresponding to pr = 20

and Z = 1.25, Tr = 8.0.
Now, since T = Tc Tr
∴ T = 282.4 × 8.0 [From Table 8.3, Tc = 282.4 K]

= 2259.2 K. (Ans.)
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Example 8.13. Calculate the density of N2 at 260 bar and 15°C by using the compressibility
chart.

Solution. Pressure,          p = 260 bar
Temperature, T = 15 + 273 = 288 K
Density, ρ = ?
For N2 (from Table 8.3) :    pc = 33.94 bar

Tc = 126.2 K

Now pr = 
p
pc

 = 
260

33 94.
 = 7.6

and Tr = 
T
Tc

 = 
288

126 2.
 = 2.28

From the compressibility chart for pr = 7.6 and Tr = 2.28, Z ~−  1.08

Also Z = 
pv

RT
 = 

p
RTρ , where ρ stands for density

or ρρρρρ = 
p

ZRT
 = 

260 10

108
8314

28
288

5×

× ×.
 = 281.5 kg/m3. (Ans.)

Example 8.14. What  should  be  the  temperature  of  1.3 kg  of  CO2  gas  in a container
at a pressure of 200 bar to behave as an ideal ?

Solution. Pressure, p = 200 bar
Temperature, T = ?
For CO2 (from Table 8.3)   pc = 73.86 bar

Tc = 304.2 K
As the gas behaves like an ideal gas, Z = 1

pr = p
pc

 = 
200

73 86.
 = 2.7

From compressibility chart for Z = 1, pr = 2.7
Tr = 2.48

∴ T = Tr × Tc = 2.48 × 304.2 = 754.4 K. (Ans.)
Example 8.15. A spherical shaped balloon of 12 m diameter contains H2 at 30°C and

1.21 bar. Find the mass of H2 in the balloon using real gas equation.
Solution. Diameter of spherical balloon = 12 m
∴  Volume, V = 4/3 π × (6)3 = 904.78 m3

Temperature, T = 30 + 273 = 303 K
Pressure,       p = 1.21 bar
Mass of H2 in the balloon, m :
For H2 (from Table 8.3) pc = 12.97 bar

Tc = 33.3 K

Now, pr = p
pc

 = 121
12 97

.
.

 = 0.093

Tr = 
T
Tc

 = 
303
333.

 = 9.1

~−
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From compressibility charge, corresponding to pr = 0.093 and Tr = 9.1
Z ~−  1

(This indicates that the gas having higher critical pressure and lower critical temperature
behaves like an ideal gas at normal pressure and temperature conditions.)

Also, pV = ZmRT

or m = 
pV

ZRT
 = 

121 10 904 78

1
8314

2
303

5. .× ×

× �
��

�
��

×
 = 86.9 kg. (Ans.)

Example 8.16. Determine the value of compressibility factor at critical point (Zcp) for the
Van der Waals’ gas.

Solution. Refer Fig. 8.13.

pcp

p

vcp
v

C.P. = Critical point

Isotherms

C.P.

Fig. 8.13

From the isotherms plotted on p-v diagram in Fig. 8.13 it can be seen that the critical
isotherms has an inflection point, whose tangent is horizontal at the critical point.

∂
∂
p
v
c

cp

�
��

�
��  = 0 and 

∂
∂

2

2
p

v
cp

 = 0

The Van der Waal’s equation at the critical point is

pcp = 
R T

v b
a

v
cp

cp cp

0
2−

− ...(i)

As Tcp is constant
∂
∂
p

v
cp

cp

�

�
�

�

�
�  = −

−
+

R T

v b

a

v
cp

cp cp

0
2 3

2

( )
 = 0 ...(ii)

∂

∂

2

2

p

v
cp

cp

�

�
��

�

�
��  = 

2 60
3 4

R T

v b
a

v
cp

cp cp( ) ( )−
−  = 0  ...(iii)
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3
vcp

�

�
�
�

�
�  × (ii) + (iii) gives

−
−

3 0
2

R T

v v bcp cp( )
 + 

2 0
3

R T

v bcp( )−
 = 0

or
3

vcp
 = 

2
( )v bcp −

or vcp  = 3b

Substituting for b in (ii), we get

−
−

R T

v v
cp

cp cp

0
21 3[ ( / ) ]

 + 
2

3
a

vcp( )
 = 0

∴ a = 
9
8

 R0Tcp vcp

Substituting for a and b in (i), we get

 pcp = 
R T

v v
cp

cp cp

0

1 3− ( / )
 – 

( / )9 8 0

2

R T v

v
cp cp

cp

∴
p v

R T
cp cp

cp0
 = 

1
2 3( / )

 – 
( / )9 8

1

But
p v

R T
cp cp

cp0
 = Zcp

∴ Zcp = 
3
2

9
8

−  = 
3
8

. (Ans.)

�����������

1. An ‘ideal gas’ is defined as a gas having no forces of intermolecular attraction. It obeys the law pv = RT.  The
specific heat capacities are not constant but are functions of temperature.
A ‘perfect gas’ obeys the law pv = RT and has constant specific heat capacities.

2. The relation between the independent properties, such as pressure, specific volume and temperature for a
pure substance is known as ‘equation of state’.

3. Each point on a p-v-T surface represents an equilibrium state and a line on the surface represents a
process.

4. Joule’s law states that the specific internal energy of a gas depends only on the temperature of the gas and
is independent of both pressure and volume.

5. Van der Waals’ equation may be written as

p
a

v
+

�
��

�
��2  (v – b) = RT

where a and b are constants for the particular fluid and R is the gas constant.
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 OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer :
1. (a) A perfect gas does not obey the law pv = RT

(b) A perfect gas obeys the law pv = RT and has constant specific heat
(c) A perfect gas obeys the law pv = RT but have variable specific heat capacities.

2. Boyle’s law states that, when temperature is constant, the volume of a given mass of a perfect gas
(a) varies directly as the absolute pressure (b) varies inversely as the absolute pressure
(c) varies as square of the absolute pressure (d) does not vary with the absolute pressure.

3. Charle’s law states that if any gas is heated at constant pressure, its volume
(a) changes directly as it absolute temperature (b) changes inversely as its absolute temperature
(c) changes as square of the absolute temperature
(d) does not change with absolute temperature.

4. The equation of the state per kg of a perfect gas is given by
(a) p2v = RT (b) pv = RT
(c) pv2 = RT (d) p2v2 = RT.
where p, v, R and T are the pressure, volume, characteristic gas constant and temperature of the gas
respectively.

5. The equation of state of an ideal gas is a relationship between the variables :
(a) pressure and volume (b) pressure and temperature
(c) pressure, volume and temperature (d) none of the above.

6. Joule’s law states that the specific internal energy of a gas depends only on
(a) the pressure of the gas (b) the volume of the gas
(c) the temperature of the gas (d) none of the above.

7. Equation for specific heat at constant pressure of an ideal gas is given by
(a) cp = a + KT + K1T

2 + K2T
3 (b) cp = a + KT2 + K1T

3 + K2T
4

(c) cp = a + KT2 + K1T
4 + K2T (d) cp = a + KT2 + K1T

3 + K2T
2.

where a, K, K1 and K2 are constants.
8. Van der Waals’ equation may be written as

(a) p
a
v

+�
��

�
��  (v – b) = RT (b) p

a

v
+

�
��

�
��2  (v – b) = RT

(c) p
a

v
+

�
��

�
��2  (v2 – b) = RT (d) p

a

v
+

�
��

�
��2  (v2 – b) = RT 2.

Answers
1. (b) 2. (b) 3.  (a) 4. (b) 5. (c)  6. (c) 7. (a)
8. (b).

THEORETICAL QUESTIONS

1. What is an ideal gas ?
2. What is the difference between an ideal and a perfect gas ?
3. What are semi-perfect or permanent gases ?
4. Define ‘Equation of state’.
5. State Boyle’s and Charle’s laws and derive an equation of the state for a perfect gas.
6. What is a p-v-T surface ? Draw a portion of a such a surface.
7. Derive the relationship between the two principal specific heats and characteristic gas constant for a

perfect gas.
8. Write a short note on Van der Waals’ equation.
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 UNSOLVED PROBLEMS

IDEAL GASES
1. A vessel of 0.03 m33 capacity contains gas at 3.5 bar pressure and 35°C temperature. Determine the mass of

the gas in the vessel. If the pressure of this gas is increased to 10.5 bar while the volume remains constant,
what will be the temperature of the gas ?
For the gas take R = 290 J/kg K. [Ans. 0.118 kg, 650°C]

2. The tyre of an automobile contains a certain volume of air at a gauge pressure of 2 bar and 20°C. The
barometer reads 75 cm of Hg. The temperature of air in the tyre rises to 80°C due to running of automobile
for two hours. Find the new pressure in the tyre.
Assume that the air is an ideal gas and tyre does not stretch due to heating. [Ans. 2.62 bar]

3. A tank made of metal is designed to bear an internal gauge pressure of 7 bar. The tank is filled with a gas
at a pressure of 5.5 bar abs., and 15°C. The temperature in the tank may reach to 50°C when the tank
stands in the sun.
(i) If the tank does not expand with temperature, will the design pressure be exceeded on a day when

atmospheric pressure is 1 bar and air in the tank reaches 50°C when exposed to hot sun ?
(ii) What temperature would have to be reached to raise the air pressure to the design limit ?

[Ans. (i) 6.16 bar, (ii) 147°C]
4. A vessel of spherical shape is 1.5 m in diameter and contains air at 40°C. It is evacuated till the vacuum

inside the vessel is 735 mm of mercury. Determine :
(i) The mass of air pumped out ;

(ii) If the tank is then cooled to 10°C what is the pressure in the tank ?
The barometer reads 760 mm of mercury. Assume that during evacuation, there is no change in tempera-
ture of air. [Ans. (i) 1.91 kg, (ii) 3 kPa]

5. A balloon of spherical shape is 8 m in diameter and is filled with hydrogen at a pressure of 1 bar abs. and
15°C. At a later time, the pressure of gas is 95 per cent of its original pressure at the same temperature.
(i) What mass of original gas must have escaped if the dimensions of the balloon are not changed ?

(ii) Find the amount of heat to be removed to cause the same drop in pressure at constant volume.
[Ans. (i) 5 per cent, (ii) 3.26 MJ]

6. Find the molecular weight and gas constant for the gas whose specific heats are as follows :
cp = 1.967 kJ/kg K, cv = 1.507 kJ/kg K. [Ans. 180.461 kJ/kg K]

7. A constant volume chamber of 0.3 m33 capacity contains 1 kg of air at 20°C. Heat is transferred to the air
until its temperature is 200°C. Find :
(i) Heat transferred ;

(ii) Change in entropy and enthalpy. [Ans. (i) 128.09 kJ, (ii) 0.339 kJ/kg K, 180.8 kJ]
8. 1 kg of air at 20°C occupying a volume of 0.3 m333 undergoes a reversible constant pressure process. Heat is

transferred to the air until its temperature is 200°C. Determine :
(i) The work and heat transferred.

(ii) The change in internal energy, enthalpy and entropy.
[Ans. (i) 51.5 kJ, 180.8 kJ ; (ii) 128.09 kJ, 180.8 kJ, 0.479 kJ/kg K]

9. A balloon of spherical shape, 10 m in diameter is filled with hydrogen at 20°C and atmospheric pressure.
The surrounding air is at 15°C and barometer reads 75 mm of Hg. Determine the load lifting capacity of the
balloon. [Ans. 587.2 kg]

10. Air expands in a cylinder in a reversible adiabatic process from 13.73 bar to 1.96 bar. If the final temperature
is to be 27°C, what would be the initial temperature ?
Also calculate the change in specific enthalpy, heat and work transfers per kg of air.

[Ans. 524 K, 224.79 kJ/kg, zero, 160.88 kJ/kg]
11. 1 kg mole of N2 is contained in a vessel of volume 2.5 m3 at 100°C.

(i) Find the mass, the pressure and the specific volume of the gas.
(ii) If the ratio of the specific heats is 1.4, evaluate the values of cp and cv.
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