Al-Mustaqbal University College of Sciences Intelligent Medical System Department

Embedded systems Lecture 2: **Programmable Logic** Devices

Prof.Dr. Mehdi Ebady Manaa

جامـــــعــة المــــسـتـقـبـل AL MUSTAQBAL UNIVERSITY

Embedded System Technology

Differ in their customization for the problem at hand

General-purpose processors

- Programmable device used in a variety of applications
 - Also known as "microprocessor"
- Features
 - Program memory
 - General datapath with large register file and general ALU
- User benefits
 - Low time-to-market and NRE costs
 - ✤ High flexibility
- Examples
 - Pentium, Athlon, PowerPC , ARM ,...

Unit cost

- the monetary cost of manufacturing each copy of the system, excluding NRE cost
- NRE cost (Non-Recurring Engineering cost)
- > The one-time monetary cost of designing the system
- total cost = NRE cost + unit cost * # of units
 - per-product cost = total cost / # of units
 - = (NRE cost / # of units) + unit cost 5

Application-specific IS processors (ASIPs)

- Programmable processor optimized for a particular class of applications having common characteristics
 - Compromise between general-purpose and ASIC (custom hardware)
- Features
 - Program memory
 - Optimized datapath
 - Special functional units
- Benefits
 - > Some flexibility, good performance, size and power
- Examples
 - DSPs, Video Signal Processors, Network Processors,..

Application-Specific ICs (ASICs)

Digital circuit designed to execute exactly one program

> coprocessor, hardware accelerator

Features

Contains only the components needed to execute a single program

- No program memory
- Benefits

Small size

Application Specific Circuits (ASIC)

Custom-designed circuits necessary if ultimate speed or energy efficiency is the goal and large numbers can be sold.

Approach suffers from long design times and high costs.

Application Specific Circuits (ASIC)

Comparing ASIP with general processors and ASIC.

General Purpose Processors

- * Such as x86, ARM
- High-end processors consume thousands of designer-years.
- Aim to MAX flexibility for all applications
- Compiler and OS must be designed for all applications, entry level is too high
- * x86 price is high

ASIP

- Is designed for a domain of applications
- Its assembly instruction set is designed to accelerate most appearing function and critical functions.
- The hardware cost and power consumption are relatively much lower. The price can be very low under volume sales.
- It is usually for predictable computing

ASIC

- Non-programmable, usually can reach the lowest power and silicon cost for only one application.
- ASIC was a dominant solution when the level of integration was limited.
- Because of the high NRE cost, it will be gradually less popular

Storage

- What is a memory?
- Artifact that stores bits
- Storage fabric and access logic
- Write-ability
 - Manner and speed a memory can be written
- Storage-permanence
 - ability of memory to hold stored bits after they are written
- Many different types of memories
 - Flash, SRAM, DRAM, etc.
- Common to compose memories

Write-ability

Ranges of write ability

High end

- Processor writes to memory simply and quickly
- E.g., RAM
- Middle range
 - Processor writes to memory, but slower
 - E.g., FLASH, EEPROM

Lower range

- Special equipment, "programmer", must be used to write to memory
- E.g., EPROM, OTP ROM

Low end

- Bits stored only during fabrication
- E.g., Mask-programmed ROM

Storage-permanence

- Range of storage permanence
- High end
 - Essentially never loses bits
 - E.g., mask-programmed ROM
 - Middle range
 - Holds bits days/months/years after memory's power source
 - turned off
 - E.g., NVRAM
 - Lower range
 - Holds bits as long as power supplied to memory
 - E.g., SRAM
 - Low end
 - Begins to lose bits almost immediately after written
 - E.g., DRAM

Memory Types

Communication

• What is a bus?

- An artifact that transfers bits
- Wires, air, or fiber and interface logic
- Associated with a bus, we have:
- Connectivity scheme
 - Serial Communication
 - Parallel Communication
 - Wireless Communication
 - Protocol
 - Ports
 - Timing Diagrams
 - Read and write cycles
 - Arbitration scheme, error detection/correction, DMA, etc.

Serial Communication

- A single wire used for data transfer
- One or more additional wires used for control (but, some protocols may not use additional control wires)
 - Higher throughput for long distance communication
 - > Often across processing node
- Lower cost in terms of wires (cable)
- E.g., USB, Ethernet, RS232, I2C, etc.

Parallel Communication

- Multiple buses used for data transfer
- One or more additional wires used for control
- Higher throughput for short distance communication
- Data misalignment problem
- Often used within a processing node
- Higher cost in terms of wires (cable)
- E.g., ISA, AMBA, PCI, etc.

- Infrared (IR)
 - Electronic wave frequencies just below visible light spectrum
 - Diode emits infrared light to generate signal
 - Infrared transistor detects signal, conducts when exposed to infrared light
 - Cheap to build
 - Need line of sight, limited range
- Radio frequency (RF)
 - Electromagnetic wave frequencies in radio spectrum
 - Analog circuitry and antenna needed on both sides of transmission
 - Line of sight not needed, transmitter power determines range

- Perform specific computation task
- Custom single-purpose processors
 - Designed by us for a unique task
- Standard single-purpose processors
 - "Off-the-shelf"
 - pre-designed for a common task

Timers

Timers: measure time intervals

- To generate timed output events
- To measure input events

Top: max count reached

Range and resolution

Counters and Watchdog Timer

• **Counter**: like a timer, but counts pulses on a general input signal rather than clock

e.g., count cars passing over a sensor
Can often configure device as either a timer or counter

Watchdog Timer

- Must reset timer every X time unit, else timer generates a signal
- Common use: detect failure, self-reset

- UART: Universal Asynchronous Receiver Transmitter
 - Takes parallel data and transmits serially
 - Receives serial data and converts to parallel
- Parity: extra bit for simple error checking
- Start bit, stop bit
- Baud rate
 - Signal changes per second
 - Bit rate, sometimes different

Pulse Width Modulator (PWM)

- Generates pulses with specific high/low times
- Duty cycle: % time high
 - Square wave: 50% duty cycle
- Common use: control average voltage to electric device
 - Simpler than DC-DC converter or digital- analog converter
 - DC motor speed, dimmer lights

LCD

- Liquid Crystal Display
- N rows by M columns
- Controller build into the LCD module
- Simple microprocessor interface using ports
- Software controlled

Keypad

- Stepper motor: rotates fixed number of degrees when given a "step" signal
 - In contrast, DC motor just rotates when power applied, coasts to stop
- Rotation achieved by applying specific voltage sequence to coils
- Controller greatly simplifies this

Thank You