

2024-2025 1

Al-Mustaqbal University

College of Sciences

Department of Cybersecurity

Subject: Object Oriented Programming (OOP)

Second Stage

Lecturer: Dr. Abdulkadhem A. Abdulkadhem

Lecture (2)

Functions and Parameter Transmission

2024-2025 2

Al-Mustaqbal University

College of Sciences

Department of Cybersecurity

1. Introduction to Functions

What is a Function?

A function is a block of code designed to perform a specific task,

reusable throughout a program. C++ allows flexible function definitions

and parameter handling.

Parameter Transmission in Functions:

In C++, parameters can be passed in multiple ways:

- Pass by Value: A copy of the argument is passed.

- Pass by Reference: The actual argument is passed, allowing the

function to modify the argument.

2. Function Overloading

Definition: Function overloading allows multiple functions to have the

same name with different signatures (i.e., different parameter types or

numbers of parameters).

Benefits: Provides better code readability and reusability.

Example Code:

#include <iostream>
using namespace std;
// Function to calculate the area of a rectangle
int area(int length, int width) {
 return length * width;
}

// Overloaded function to calculate the area of a circle
double area(double radius) {
 return 3.1415 * radius * radius;
}

2024-2025 3

Al-Mustaqbal University

College of Sciences

Department of Cybersecurity

int main() {
 int length = 5, width = 10;
 double radius = 7.5;

 cout << "Area of rectangle: " << area(length, width) << endl;
 cout << "Area of circle: " << area(radius) << endl;

 return 0;
}

Explanation:

The 'area' function is overloaded: one version takes two 'int'

parameters, and the other takes a 'double' parameter. The correct

function is selected based on the argument type.

3. Inline Functions

Definition: Inline functions are expanded in line where they are called,

which can reduce function call overhead, especially for small functions.

When to Use: Inline functions should be used for small, frequently called

functions.

Example Code:

#include <iostream>
using namespace std;
// Inline function to add two numbers
inline int add(int a, int b) {
 return a + b;
}

int main() {
 int x = 10, y = 20;
 cout << "Sum: " << add(x, y) << endl;

2024-2025 4

Al-Mustaqbal University

College of Sciences

Department of Cybersecurity

 return 0;
}
Explanation:

The 'add' function is declared as 'inline'. When called, the compiler

replaces the function call with the function's code, which can improve

performance for small functions.

4. Default Arguments

Definition: Default arguments allow function parameters to have default

values if no arguments are passed during the function call.

Advantages: Simplifies function calls and improves code readability.

Example Code:

#include <iostream>
using namespace std;
// Function to print a message with a default argument
void greet(string name = "Guest") {
 cout << "Hello, " << name << "!" << endl;
}

int main() {
 greet(); // Uses default argument
 greet("Alice"); // Passes 'Alice' as argument

 return 0;
}
Explanation:

The 'greet' function has a default argument 'Guest'. If no argument is

passed, the default value is used. Otherwise, the provided argument

overrides the default value.

2024-2025 5

Al-Mustaqbal University

College of Sciences

Department of Cybersecurity

5. Pass by Reference

Definition: Passing by reference allows a function to modify the original

argument. This is achieved by passing a reference to the argument

rather than a copy.

Benefits: Saves memory (no copy is made) and allows modification of

the caller's variables.

Example Code:

#include <iostream>
using namespace std;
// Function to swap two integers using pass by reference
void swap(int &a, int &b) {
 int temp = a;
 a = b;
 b = temp;
}

int main() {
 int x = 5, y = 10;
 cout << "Before swap: x = " << x << ", y = " << y << endl;

 swap(x, y); // Passing variables by reference
 cout << "After swap: x = " << x << ", y = " << y << endl;

 return 0;
}
Explanation:

The 'swap' function takes two reference parameters ('&a' and '&b').

Changes made to 'a' and 'b' within the function affect the original 'x' and

'y' variables in 'main'.

2024-2025 6

Al-Mustaqbal University

College of Sciences

Department of Cybersecurity

6. Return by Reference

Definition: Returning by reference allows a function to return a

reference to a variable rather than a copy, enabling the caller to modify

the returned variable directly.

When to Use: Used when you want the function to return a variable that

can be modified by the caller.

Example Code:

#include <iostream>
using namespace std;
// Function that returns a reference to a variable
int& getLargest(int &a, int &b) {
 return (a > b) ? a : b;
}

int main() {
 int x = 5, y = 10;
 cout << "Before modification: x = " << x << ", y = " << y << endl;

 getLargest(x, y) = 100; // Modifying the largest number by reference
 cout << "After modification: x = " << x << ", y = " << y << endl;

 return 0;
}
Explanation:

The 'getLargest' function returns a reference to the largest of two

integers. In 'main', the returned reference is used to directly modify the

largest variable.

Summary

1. Function Overloading allows multiple functions with the same

name but different parameters.

2024-2025 7

Al-Mustaqbal University

College of Sciences

Department of Cybersecurity

2. Inline Functions can reduce the overhead of small function calls

by expanding them inline.

3. Default Arguments provide default values for function

parameters.

4. Pass by Reference allows a function to modify the caller's

arguments directly, saving memory and time.

5. Return by Reference enables a function to return a reference to a

variable, allowing modifications outside the function.

Homework Assignment

Instructions:

 Complete each task as specified.

 Write clean, well-commented C++ code for each task.

 Ensure that your code compiles and runs correctly.

 Due Date: 1 week.

 Submit your homework to the google form

[https://forms.gle/aLc1JinRpfKmtwg69].

Task 1: Function Overloading

Write an overloaded function named calculate to perform the following

operations:

 For two integer inputs: Return the sum of the two numbers.

 For two floating-point inputs: Return the product of the two

numbers.

 For three integer inputs: Return the largest of the three numbers.

cout << calculate(5, 10); // Output: 15 (integer sum)
cout << calculate(2.5, 4.0); // Output: 10.0 (floating-point product)
cout << calculate(3, 7, 2); // Output: 7 (largest of three integers)

2024-2025 8

Al-Mustaqbal University

College of Sciences

Department of Cybersecurity

Task 2: Default Arguments

Write a function named printMessage that takes two parameters:

message (a string) and times (an integer). The function should print the

message the specified number of times. If no times argument is

provided, the default value should be 3.

Example:

printMessage("Hello!"); // Prints "Hello!" 3 times
printMessage("Hi!", 5); // Prints "Hi!" 5 times

