Sheet- 2

1. Heat conduction equation of one dimension with heat generation and

(a)
$$\frac{d}{dx}\left(k\frac{dT}{dx}\right) - \dot{g} = 0$$
 (b) $\frac{d^2T}{dx^2} + \dot{g} = 0$

(b)
$$\frac{d^2T}{dx^2} + \dot{g} = 0$$

(c)
$$\frac{d^2T}{dx^2} - \frac{\dot{g}}{k} = 0$$

(c)
$$\frac{d^2T}{dx^2} - \frac{\dot{g}}{k} = 0$$
 (d) $\frac{d}{dx} \left(k \frac{dT}{dx} \right) + \dot{g} = 0$ (e) No one of above

Heat conduction equation of one dimension for steady flow with no heat source and constant thermal conductivity in cylindrical coordinate is ______.

(a)
$$\frac{d^2T}{dr^2} = 0$$

(b)
$$\frac{d}{dr} \left(r \frac{dT}{dr} \right) = 0$$

(a)
$$\frac{d^2T}{dr^2} = 0$$
 (b) $\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$ (c) $\frac{d}{dr}\left(r^2\frac{dT}{dr}\right) = 0$

$$(\mathsf{d})\,\frac{d}{dr}\Big(r^3\,\frac{dT}{dr}\Big) = 0$$

(d)
$$\frac{d}{dr} \left(r^3 \frac{dT}{dr} \right) = 0$$
 (e) $\frac{d}{dr} \left(kr^2 \frac{dT}{dr} \right) = 0$

Heat transfer by convection through spherical surface is calculated by the 3.

(a)
$$4\pi r^2 h(T_S-T_\infty)$$
 (b) $\pi r^2 h(T_S-T_\infty)$ (c) $4\pi r^2 k(T_S-T_\infty)$

(b)
$$\pi r^2 h(T_s - T_\infty)$$

(c)
$$4\pi r^2 k (T_s - T_\infty)$$

(d)
$$2\pi r Lh(T_s - T_\infty)$$

(d)
$$2\pi r Lh(T_s - T_{\infty})$$
 (e) $r^2 h(T_s - T_{\infty})$

4. Thermal resistance for a plane wall is ______.

(a)
$$R_{th} = \frac{k}{A\Delta x}$$
 (b) $R_{th} = \frac{A}{k\Delta x}$ (c) $R_{th} = \frac{\Delta x}{kA}$ (d) $R_{th} = \frac{Ak}{\Delta x}$ (e) $R_{th} = \frac{k\Delta x}{A}$

(b)
$$R_{th} = \frac{A}{k\Delta x}$$

(c)
$$R_{th} = \frac{\Delta x}{kA}$$

(d)
$$R_{th} = \frac{Ak}{\Delta x}$$

(e)
$$R_{th} = \frac{k\Delta x}{A}$$

5. Heat transfer rate by conduction in the wall is _____

$$(a)\dot{Q} = \frac{k\Delta x (T_1 - T_2)}{4}$$

(b)
$$\dot{Q} = \frac{\Delta x (T_1 - T_2)}{\Delta k}$$

(c)
$$\dot{Q} = \frac{kA(T_1 - T_2)}{\Delta x}$$

(a)
$$\dot{Q} = \frac{k\Delta x(T_1 - T_2)}{A}$$
 (b) $\dot{Q} = \frac{\Delta x(T_1 - T_2)}{Ak}$ (c) $\dot{Q} = \frac{kA(T_1 - T_2)}{\Delta x}$ (d) $\dot{Q} = \frac{kAx(T_2 - T_1)}{\Delta x}$

- (e) No one of the above
- 6. Heat conduction resistance for cylindrical shell is . . .

(a)
$$R_{cyl} = \frac{1}{4\pi k r^2} ln \frac{r_2}{r_1}$$
 (b) $R_{cyl} = \frac{1}{4\pi r L k} ln \frac{r_2}{r_1}$ (c) $R_{cyl} = \frac{1}{2\pi k r^2} ln \frac{r_2}{r_1}$

(b)
$$R_{cyl} = \frac{1}{4\pi r L k} ln \frac{r_2}{r_1}$$

(c)
$$R_{cyl} = \frac{1}{2\pi k r^2} ln \frac{r_2}{r_3}$$

(d)
$$R_{cyl} = \frac{1}{2\pi Lk} ln \frac{r_2}{r_1}$$
 (e) $R_{cyl} = \frac{1}{2\pi Lh} ln \frac{r_2}{r_1}$

(e)
$$R_{cyl} = \frac{1}{2\pi Lh} ln \frac{r_2}{r_1}$$

7. Thermal resistance of spherical shell is _____.

(a)
$$R_{sph} = \frac{1}{4\pi k} ln \frac{r_2}{r_1}$$
 (b) $R_{sph} = \frac{1}{4\pi k} ln \frac{r_1}{r_2}$ (c) $R_{sph} = \frac{1}{4\pi k} \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$

(d)
$$R_{sph} = \frac{1}{4\pi k} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
 (e) $R_{sph} = \frac{1}{4\pi Lk} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$

- 8. Overall heat transfer coefficient is combination of _____
 - (a) conduction-convection-conduction (b) convection-radiation-conduction
 - (c) convection-conduction-convection (d) radiation-conduction-radiation
 - (e) convection-convection-conduction
- 9. Composite wall of two layers in series has the two resistances R_{th1} and R_{th2} . The resultant resistance is _____.

(a)
$$R_{th} = R_{th1}/R_{th2}$$
 (b) $R_{th} = R_{th1} + R_{th2}$ (c) $R_{th} = \frac{R_{th1}R_{th2}}{R_{th1} + R_{th2}}$ (d) $R_{th} = R_{th1} - R_{th2}$

- (e) $R_{th}=R_{th1}xR_{th2}$
- 10. The overall heat transfer for cylindrical shell based on the outer surface area

(a)
$$U_o = \left[\frac{1}{h_i} + \frac{r_o}{k} \ln \frac{r_i}{r_o} + \frac{1}{h_o}\right]^{-1}$$
 (b) $U_o = \left[\frac{r_o}{h_i} + \frac{r_o}{k} \ln \frac{r_o}{r_i} + \frac{1}{h_o}\right]^{-1}$

(c)
$$U_o = \left[\frac{r_o}{r_i h_i} + \frac{r_o}{k} \ln \frac{r_o}{r_i} + \frac{1}{h_o}\right]^{-1}$$
 (d) $U_o = \left[\frac{1}{h_i} + \frac{r_o}{k} \ln \frac{r_i}{r_o} + \frac{r_i}{r_o h_o}\right]^{-1}$

(e)
$$U_o = \left[\frac{r_i}{h_i} + \frac{r_o}{k} \ln \frac{r_i}{r_o} + \frac{r_o}{h_o}\right]^{-1}$$

11. The differential equation of temperature distribution in a plane wall for steady state with no heat generation and thermal conductivity if function of temperature is ______.

(a)
$$\frac{d^2T}{dx^2} = 0$$
 (b) $\frac{d^2T}{dx^2} + \frac{\dot{g}}{k} = 0$ (c) $\frac{\partial^2T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial \tau}$ (d) $\frac{d}{dx} \left(k \frac{dT}{dx} \right) = 0$ (e) $\frac{dT}{dx} = 0$