

MEDICAL IMAGING PROCESSING FOURTH STAGE

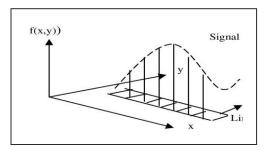
2025-2026

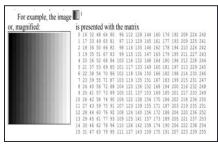
Introduction and Basics

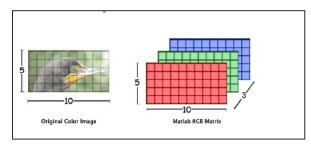
BY

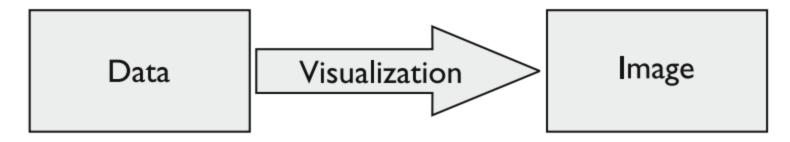
MS.c Mortada Sabri

MS.c Najwan Thaeer Ali


Lec₁


Learning Objectives


- Define image processing.
- Differentiate between image, graphics, and visualization.
- Understand the goals and applications of image processing.
- Distinguish between low, mid, and high-level processing tasks.


What is an Image?

- A 2D function of light intensity.
- Represented as a matrix of pixels.
- Gray scale image → 1 value per pixel.
- Color image → 3 values per pixel (R, G, B.

What is Image Processing?

- A set of methods and techniques to analyze, enhance, and transform images using a computer.
- Intersects with computer graphics, computer vision, and signal processing.

Main Goals

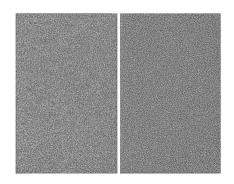
- 1. Image Enhancement → Improve visual quality (e.g., sharpening).
- 2. Image Restoration → Remove distortions (e.g., noise, blur).
- 3. Image Compression → Reduce storage size.
- 4. Image Analysis → Extract information (e.g., edge detection).

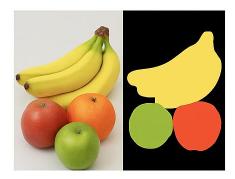
Applications

- Medical Imaging (X-ray, MRI).
- Remote Sensing (satellites).
- Robotics & AI (computer vision).
- Industrial Inspection.
- Security & Biometrics.

Levels of Processing

- Low-level: noise removal, brightness adjustment.
- Mid-level: segmentation, feature extraction.
- High-level: recognition, interpretation.


Levels of Processing


Levels of Processing


Low-level Processing

Mid-level Processing

High-level Processing

Summary

- Image = 2D representation of visual data.
- Image processing = manipulation of images by computer.
- Two major purposes:
- Visualization (for humans).
- Analysis (for machines).
- Widely applied in science, medicine, industry, and security.

Assignment??

- 1. Define image processing in your own words.
- 2. List 3 real-life applications of image processing.
- 3. Differentiate between image enhancement and restoration with examples.

Homework ?

- Definition: Write in your own words what image processing means.
- Applications: List 3 real-life applications of image processing that you encounter in daily life.
- Enhancement vs. Restoration: Explain the difference between:
- Image Enhancement (give an example, e.g., increasing brightness).
- Image Restoration (give an example, e.g., removing blur).
- Levels of Processing: For each level (Low, Mid, High), provide one example of an image processing task.
- Critical Thinking: Why do you think image processing is important in modern technologies like self-driving cars or medical imaging?

Practical side

- Image Representation
- Digital image = matrix of pixels.
- Grayscale: pixel values [0–255].
- - Color (RGB): 3 channels (Red, Green, Blue).
- Example: 256 x 256 grayscale image = 65,536 pixels.

MATLAB Basics

- % Read and show image
- img = imread('peppers.png');
- imshow(img);

- % Convert to grayscale
- gray_img = rgb2gray(img);
- imshow(gray_img);

Resize & Rotate

- % Resize
- resized_img = imresize(img, 0.5);
- imshow(resized_img);

- % Rotate
- rotated_img = imrotate(img, 45);
- imshow(rotated_img);

Save Image

imwrite(gray_img, 'gray_peppers.png');

Practical Example

- % Read
- img = imread('peppers.png');
- figure, imshow(img), title('Original Image');
- % Grayscale
- gray_img = rgb2gray(img);
- figure, imshow(gray_img), title('Grayscale Image');

GOOD LUCK EVERYONE