

MEDICAL IMAGING PROCESSING FOURTH STAGE

2025-2026

Pixel Relationships – Arithmetic Operations – Logical Operations – ROI Applications

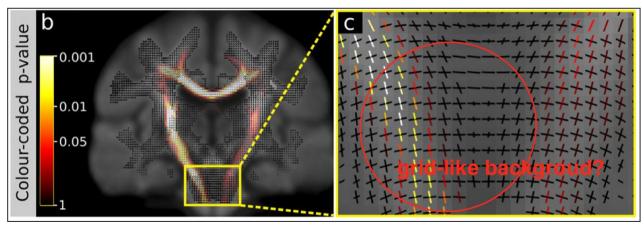
BY

MS.c Mortada Sabri

MS.c Najwan Thaeer Ali

Lec 3

Outline


- Pixel Relationships
- Arithmetic Operations
- Logical Operations
- Region of Interest (ROI)
- Advanced Notes

Homework

Introduction

A **digital image** is a 2D function f(x,y), where x and y are spatial coordinates, and f(x,y) represents pixel intensity.

Image analysis depends on **relationships between pixels** and their intensity values.

2. Pixel Relationships

- Neighborhood
- Adjacency
- Connectivity
- Paths
- Regions and boundaries

Neighbors of a Pixel

Any pixel p(x, y) has two vertical and two horizontal neighbors, given by

morizontai neighbors, given by

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

• This set of pixels are called the 4-neighbors of

P, and is denoted by N4(P).

• Each of them are at a unit distance from P.

Neighbors of a Pixel (Contd.)

• The four diagonal neighbors of p(x,y) are given by,

$$(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)$$

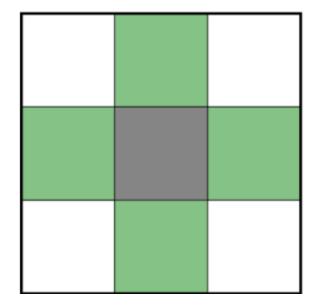
- This set is denoted by ND(P).
- Each of them are at Euclidean distance of
- 1.414 from P.

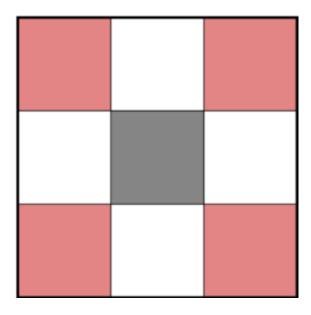
Types of Pixel Neighborhoods

• Image sampling:

Rectangular sampling - In most cases, images are sampled by laying a rectangular grid over an image.

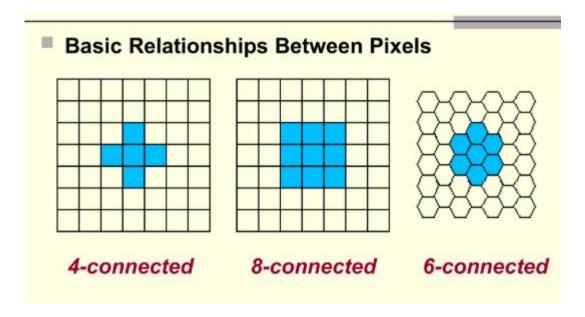
Hexagonal sampling - An alternative sampling scheme is shown.

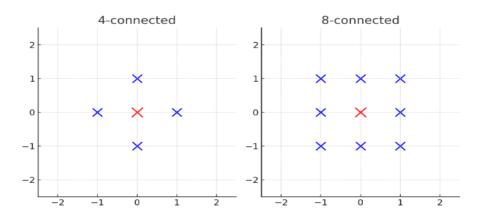

• Pixel Neighborhoods:


4-connected and 8-connected neighborhood (Rectangular sampling)

6-connected neighborhood (Hexagonal sampling)

Types of Pixel Neighborhoods


- 4-neighbors: left, right, top, bottom
- 8-neighbors: includes diagonals



Connectivity in Images

- 4-connectivity
- 8-connectivity
- m-connectivity

6-connected

Arithmetic Operations

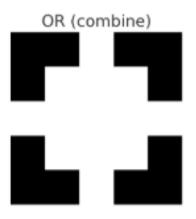
- Addition: increases brightness / merge images
- Subtraction: detects motion or differences
- Multiplication: adjusts contrast
- Division: normalization and scaling

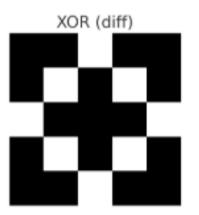
```
    Addition: p + q
    Subtraction: p - q
    Multiplication: p*q
    Division: p/q
```

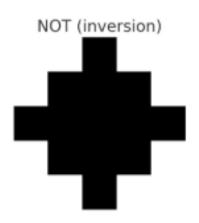
Logical Operation Examples

• AND: extract common

region


• OR: combine regions


• XOR: detect differences


• NOT: image inversion

	AND				OR				XOR			
Input 1	1	1	0	0	1	1	0	0	1	1	0	0
Input 2	1	0	1	0	1	0	1	0	1	0	1	0
output	1	0	0	0	1	1	1	0	0	1	1	0

Region of Interest (ROI) – Concept

- Definition: a specific part of an image for processing
- Focus on important areas
- Reduce computation

ROI Applications

- Medical imaging: tumor detection
- Security: face recognition

Practical side

Arithmetic Operations

```
I1 = imread('img1.jpg');
I2 = imread('img2.jpg');
I_add = I1 + I2;  % Add images
I_sub = I1 - I2;  % Subtract images
```

Logical Operations

```
BW1 = imread('binary1.png');
```

BW2 = imread('binary2.png');

 $BW_or = BW1 \mid BW2;$

 $BW_not = ~BW1;$

% Logical AND

% Logical OR

% Logical NOT

Region of Interest (ROI)

```
ROI = I(100:200, 150:250); % Extract
```

ROIimshow(ROI); % Display ROI

Writing Images

imwrite(I, 'output.jpg');

% Save image

Homework:?

Truth table (for binary pixels 0/1):

A AND B A OR B A XOR B

Α	В
0	0
0	1
1	0
1	1

GOOD LUCK EVERYONE