

College of engineering and technology chemical and petroleum industrial Department class – three Term-1
Heat transfer – Code No. UOMU0102051 week-3 General conduction equation with heat generation

Prof. Dr. Majid H. Hameed

The general equations of heat conduction in three dimensions in different type of coordinates are:

1. Cartesian coordinates

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{g}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial \tau}$$
 Fourier-Biot equation

Where: $\alpha = \frac{k}{\rho C}$ the thermal diffusivity

a) For steady state

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{g}}{k} = 0$$
 Poisson equation

b) Transient, and with no heat generation

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = \frac{1}{\alpha} \frac{\partial T}{\partial \tau}$$
 Diffusion equation

c) Steady, and with no heat generation

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = \mathbf{0}$$

Aphalicicini quiqui di oriente di

Note: All these equation can be written in two dimensions and one dimension by omitting one or two terms of differentiations of x, y, z.

2. Cylindrical Coordinates

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{g}}{k} = \frac{1}{\alpha}\frac{\partial T}{\partial \tau}$$

3. Spherical Coordinates

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial T}{\partial r}\right) + \frac{1}{r^2\sin^2\phi}\frac{\partial^2 T}{\partial \phi^2} + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 T}{\partial \theta^2} + \frac{\dot{g}}{k} = \frac{1}{\alpha}\frac{\partial T}{\partial \tau}$$

The temperature distribution equation:

The temperature distribution equation in three dimensions and two dimensions are difficult to solve by hand so it is leave for post graduations. The equation of one-dimensional temperature distribution can be solved in this level of study.

1. Study-state with no heat generation

As it is taken in the first week

Differential equation of heat conduction in a slab in steady state with no heat generation is:

$$\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0$$

For k=constant, the equation becomes

Temperature

$$\frac{d^2T}{dx^2} = 0$$

Boundary conditions

B.C.1 At
$$x=x_1$$
 $T=T_1$, B.C.2 at $x=x_2$ $T=T_2$

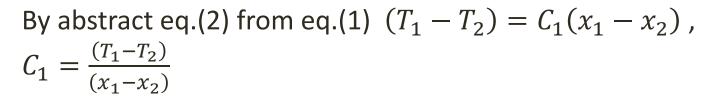
By first integration $\frac{dT}{dx} = C_1$

By second integration $T = C_1 x + C_2$ (B.C.E)

 C_1 , C_2 are the integration constants

By applying the B.C.1
$$T_1 = C_1 x_1 + C_2$$
 (1)

By applying the B.C.2
$$T_2 = C_1 x_2 + C_2$$
 (2)



By substituting in eq.(1)
$$T_1 = C_1 x_1 + C_2 = \frac{(T_1 - T_2)}{(x_1 - x_2)} x_1 + C_2$$

Then,
$$C_2 = T_1 - \frac{(T_1 - T_2)}{(x_1 - x_2)} x_1$$

By substituting C₁ and C₂ in the (T.D.E)

$$T = C_1 x + C_2 = \frac{(T_1 - T_2)}{(x_1 - x_2)} x + T_1 - \frac{(T_1 - T_2)}{(x_1 - x_2)} x_1$$

$$T - T_1 = \frac{(T_1 - T_2)}{(x_1 - x_2)} (x - x_1) = (T_2 - T_1) \frac{(x - x_1)}{(x_2 - x_1)}$$

$$\frac{(T - T_1)}{(T_2 - T_1)} = \frac{(x - x_1)}{(x_2 - x_1)} = \frac{(x - x_1)}{\Delta x}$$

Ex.1. A slab is of thickness 5cm. The temperature at one side is 80°C and the temperature at the other side is 20°C. Find the temperature distribution equation and find the temperature at the midpoint of the slab.

Solution: a slab $\Delta x=5$ cm, $x_1=0$ T₁=80°C, and $x_2=5$ cm=0.05cm, T₂=20°C

Requirements: T.D.E, Temperature of midpoint of the slab

Analysis: The boundary conditions are:

ALSTA OBAL UNITED AND THE CONTROL OF THE CONTROL OF

B.C.1
$$x_1 = 0$$
 T₁=80°C, and B.C.2 x_2 =5cm=0.05cm, T₂=20°C

The differential equation is: $\frac{d^2T}{dx^2} = 0$

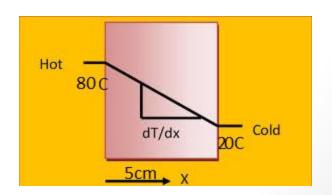
After double integrations of this relation $T = C_1 x + C_2$

And applying the B.Cs we find the T.D.E

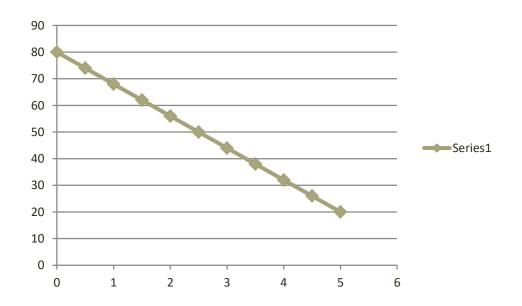
$$\frac{(T-T_1)}{(T_2-T_1)} = \frac{(x-x_1)}{\Delta x}$$
 or $\frac{(T-80)}{(20-80)} = \frac{(x-0)}{5}$

$$T = 80 - \frac{60x}{5}$$

$$T = 80 - 12x$$



X	0	0.5	1.0	1.5	2	2.5	3. 0	3. 5	4. 0	4. 5	5. 0	C m
			68									



2. Plane wall with heat source.

The heat source or heat generation is a uniform heat is generating in body its unit W/m³

The differential equation of temperature with heat generation and study state is to be as below

$$\frac{d}{dx}\left(k\frac{dT}{dx}\right) + \dot{g} = 0$$

 \dot{g} : The heat generation or heat

source. W/m^3

If the thermal conductivity is constant (k=constant) the relation becomes

$$\frac{d^2T}{dx^2} + \frac{\dot{g}}{k} = 0$$
, Or $\frac{d^2T}{dx^2} = -\frac{\dot{g}}{k}$

$$\frac{d^2T}{dx^2} = -\frac{\dot{g}}{k}$$

Aphall cicking applications of formers of fo

To solve relation we need description of the case of the body and its boundary conditions.

We will take a slab of thickness L, its temperature of its two ends are T_1 , and T_2 . There is heat generation of \dot{g} W/m³. The slab has constant thermal conductivity k. The slab is shown in the figure.

$$\frac{d^2T}{dx^2} = -\frac{\dot{g}}{k}$$

The boundary conditions are

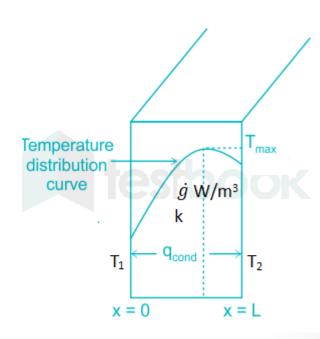
B.C.1 at
$$x=0$$
 $T=T_1$

B.C.2 at
$$x=L T=T_2$$

By integration the equation

$$\frac{d^2T}{dx^2} = -\frac{\dot{g}}{k}$$

$$\frac{dT}{dx} = -\frac{\dot{g}}{k}x + C_1$$



And by second integration

$$T = -\frac{\dot{g}x^2}{2k} + C_1 x + C_2$$
 (T.D.E)

By applying the boundary conditions we get:

$$T_1 = 0 + 0 + C_2 \rightarrow C_2 = T_1$$

$$T = -\frac{\dot{g}x^2}{2k} + C_1 x + T_1$$

$$T_2 = -\frac{\dot{g}L^2}{2k} + C_1L + T_1 \rightarrow C_1 = \frac{T_2 - T_1}{L} + \frac{\dot{g}L}{2k}$$

Then
$$T = -\frac{\dot{g}x^2}{2k} + \left(\frac{T_2 - T_1}{L} + \frac{\dot{g}L}{2k}\right)x + T_1$$

$$T = \frac{\dot{g}L}{2k}x - \frac{\dot{g}x^2}{2k} + \frac{x}{L}(T_2 - T_1) + T_1$$

$$T = \frac{\dot{g}L}{2k} \left(x - \frac{x^2}{L} \right) + \frac{x}{L} \left(T_2 - T_1 \right) + T_1$$
 (T.D.E)

AL MASSING AND TO STATE OF THE PARTY OF THE

The heat flux at any surface can be calculated as below

$$\dot{q} = -k \frac{dT}{dx}$$

The heat flux at x=0

$$\dot{q}_{x=0} = -k \frac{dT}{dx} \Big|_{x=0} = -k \frac{d}{dx} \left(\frac{\dot{g}L}{2k} \left(x - \frac{x^2}{L} \right) + \frac{x}{L} (T_2 - T_1) + T_1 \right) \Big|_{x=0}$$

$$\dot{q}_{x=0} = -k \left(\frac{\dot{g}L}{2k} \left(1 - \frac{2x}{L} \right) + \frac{1}{L} (T_2 - T_1) \right) \Big|_{x=0}$$

$$\dot{q}_{x=0} = -\left(\frac{\dot{g}L}{2} \left(1 - \frac{2\times 0}{L} \right) + \frac{k}{L} (T_2 - T_1) \right) = -\left(\frac{\dot{g}L}{2} + \frac{k}{L} (T_2 - T_1) \right)$$

The heat flux at x=L

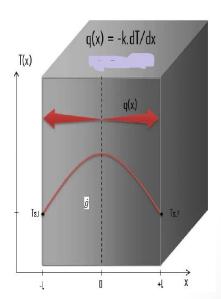
$$\begin{split} \dot{q}_{x=0} &= -k \frac{dT}{dx} \Big)_{x=L} = -k \frac{d}{dx} \left(\frac{\dot{g}L}{2k} \left(x - \frac{x^2}{L} \right) + \frac{x}{L} (T_2 - T_1) + T_1 \right)_{x=L} \\ \dot{q}_{x=L} &= -k \left(\frac{\dot{g}L}{2k} \left(1 - \frac{2x}{L} \right) + \frac{1}{L} (T_2 - T_1) \right)_{x=L} \\ \dot{q}_{x=L} &= -\left(\frac{\dot{g}L}{2} \left(1 - \frac{2 \times L}{L} \right) + \frac{k}{L} (T_2 - T_1) \right) = \left(\frac{\dot{g}L}{2} - \frac{k}{L} (T_2 - T_1) \right) \end{split}$$

Ex.2. Take a wall of constant thermal conductivity and uniform heat generation of \dot{g} . The wall surfaces temperature is the same and equal T_w . Find the equation of the temperature distribution and the heat flux at its surfaces.

- The boundary conditions are:
- B.C.1 T=T_w at x= $\pm L$, and B.C.2 $\frac{dT}{dx} = 0$ at x=0

By first integration we get

- From B.C.2 we find $C_1=0$
- The equation becomes



By second integration

$$T = -\frac{\dot{g}x^2}{2k} + C_2 \quad \text{(T.D.E)}$$

By applying the first boundary condition

$$C_2 = T_w + \frac{\dot{g}L^2}{2k}$$

Then
$$T = -\frac{\dot{g}x^2}{2k} + T_w + \frac{\dot{g}L^2}{2k}$$

$$T - T_w = \frac{\dot{g}L^2}{2k} \left(1 - \left(\frac{x}{L} \right)^2 \right)$$

$$T_o - T_w = \frac{\dot{g}L^2}{2k}$$
 at the midline of the wall

$$\frac{T - T_W}{T_O - T_W} = \left(1 - \left(\frac{x}{L}\right)^2\right)$$

To find the heat flux at x=-L

$$\dot{\boldsymbol{q}}_{x=-L} = -k\frac{dT}{dx}\Big|_{x=-L} = -k\frac{d}{dx}\Big(T_w + \frac{\dot{g}L^2}{2k}\Big(1 - \Big(\frac{x}{L}\Big)^2\Big)\Big)_{x=-L}$$

$$= -k\Big(-\frac{\dot{g}}{2k}(2x)\Big)_{x=-L} = -\dot{g}L$$
And
$$\dot{\boldsymbol{q}}_{x=L} = \dot{\boldsymbol{g}}L$$

Cylinder without heat source

take a hollow cylinder

Boundary conditions: at $r=r_1$ $T=T_1$, at $r=r_2$ $T=T_2$

$$\frac{d}{dr}\left(kr\frac{dT}{dr}\right) = 0$$

If k=constant

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$$

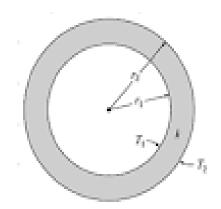
By first integration

$$r\frac{dT}{dr} = C_1 \rightarrow \frac{dT}{dr} = \frac{C_1}{r}$$

By second integration

$$T = C_1 lnr + C_2$$

By applying the B.Cs

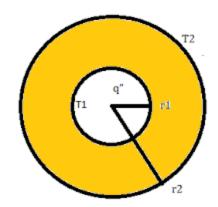


•
$$T = C_1 lnr + C_2$$

•
$$T_1 = C_1 ln r_1 + C_2$$

•
$$T_2 = C_1 ln r_2 + C_2$$

• The solution is



Solid Cylinder with heat source

We can take solid cylinder of constant thermal conductivity k and uniform heat generation \dot{g} as shown in the figure.

The B.Cs are B.C.1 r=0,
$$\frac{dT}{dr} = 0$$
, B.C.2 r=r_o T=T_w

Differential equation with heat generation

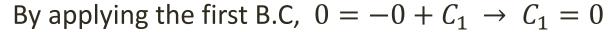
$$\frac{d}{dr}\left(rk\frac{dT}{dr}\right) + \dot{g}r = 0$$

Where k=constant

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = -\frac{gr}{k}$$

By the first integration

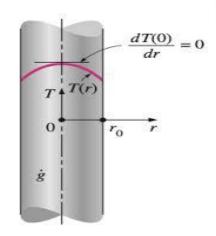
$$\left(r\frac{dT}{dr}\right) = -\frac{\dot{g}r^2}{2k} + C_1$$



$$\left(r\frac{dT}{dr}\right) = -\frac{\dot{g}r^2}{2k} \to \frac{dT}{dr} = -\frac{\dot{g}r}{2k}$$

By second integration we get

$$T = -\frac{\dot{g}r^2}{4k} + C_2 \qquad \text{(T.D.E)}$$



By applying second B.C.2

$$T_{o} = -\frac{\dot{g}r_{o}^{2}}{4k} + C_{2} \rightarrow C_{2} = T_{w} + \frac{\dot{g}r_{o}^{2}}{4k}$$

$$T = -\frac{\dot{g}r^{2}}{4k} + T_{w} + \frac{\dot{g}r_{o}^{2}}{4k}$$

$$T - T_{w} = \frac{\dot{g}r_{o}^{2}}{4k} \left(1 - \frac{r^{2}}{r_{o}^{2}}\right)$$

$$T_o - T_w = \frac{\dot{g}r_o^2}{4k}$$
 At the center line of the cylinder

$$\frac{T - T_W}{T_O - T_W} = \left(1 - \frac{r^2}{r_O^2}\right)$$

$$\dot{q}_{r=r_0} = -k \frac{dT}{dr} \Big|_{r=r_0} = -k \left(-\frac{\dot{g}r}{2k} \right)_{r=r_0} = \frac{\dot{g}r_0}{2}$$

Ex.3. A plane wall of 10cm thick one surface of the wall is at temperature of 100°C and the other surface is at 20°C. Thermal conductivity of the wall material is 30W/m.°C and the heat generation in the wall is 6x10⁵W/m³. Find the temperature distribution equation and the location and magnitude of maximum temperature in the wall and the heat flux from its two surfaces.

Solution: A plane wall L=10cm=0.1m, at x=0 T=100°C, and at x=0.1m T=20°C, k=30W/m.°C, $\dot{g} = 6 \times 10^5 W/m^3$

Requirements: temperature distribution equation

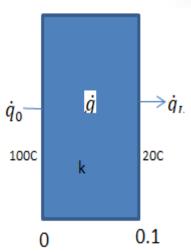
The magnitude and location of maximum temperature Heat flux at each surfaces of the wall.

Analysis: to solve this problem, we can put the boundary condition as below

$$x = 0, T = T_1 = 100$$
°C, and x=L, T=T₂=20°C

The differential of temperature distribution is

$$\frac{d^2T}{dx^2} = -\frac{g}{k}$$



The first integrating gives $\frac{dT}{dx} = -\frac{gx}{h} + C_1$

$$\frac{dT}{dx} = -\frac{\dot{g}x}{k} + C_1$$

The second integration gives $T = -\frac{\dot{g}x^2}{2k} + C_1x + C_2$

$$T = -\frac{gx}{2k} + C_1x + C_2$$

By applying B.C.1
$$T_1 = -\frac{\dot{g}(0)^2}{2k} + C_1(0) + C_2 \rightarrow C_2 = T_1 = 100^{\circ}\text{C}$$

From B.C.2
$$T_2 = -\frac{\dot{g}(L)^2}{2k} + C_1 L + T_1$$

$$T = -\frac{\dot{g}x^2}{2k} + \left[\left(\frac{T_2 - T_1}{L} \right) + \frac{\dot{g}L}{2k} \right] x + T_1$$

$$T = -\frac{6 \times 10^5 \times x^2}{2 \times 30} + [400]x + 100 = -10000x^2 + 200x + 100$$
 T.D.E.

To find the location and magnitude of the maximum temperature

•
$$\frac{dT}{dx} = -20000x + 200 = 0 \rightarrow x = 0.01m$$

•
$$T_{max} = -10000(0.01)^2 + 200 \times 0.01 + 100 = 100$$

X	0	0.01 Tmax	0.02	0.04	0.06	0.08	0.1
Т	100	101	100	92	76	52	20

The heat flux at the two surfaces

$$\begin{split} \dot{q}_{x} &= -k \frac{dT}{dx} \\ \dot{q}_{0} &= -k \frac{dT}{dx} \Big)_{x=0} = -k \frac{d}{dx} \left[-\frac{\dot{g}x^{2}}{2k} + \left[\left(\frac{T_{2} - T_{1}}{L} \right) + \frac{\dot{g}L}{2k} \right] x + T_{1} \right]_{x=0} \\ \dot{q}_{0} &= -k \left[-\frac{\dot{g}x}{k} + \left(\frac{T_{2} - T_{1}}{L} \right) + \frac{\dot{g}L}{2k} \right]_{x=0} = -k \left[\left(\frac{T_{2} - T_{1}}{L} \right) + \frac{\dot{g}L}{2k} \right] \\ &= -30 \left[\left(\frac{20 - 100}{0.1} \right) + \frac{6 \times 10^{5} \times 0.1}{2 \times 30} \right] = -30 (-800 + 1000) \\ &= -6000 \text{W/m}^{2} \end{split}$$

$$\begin{split} \dot{q}_L &= -k \frac{dT}{dx} \Big)_{x=L} = -k \frac{d}{dx} \Big[-\frac{\dot{g}x^2}{2k} + \Big[\Big(\frac{T_2 - T_1}{L} \Big) + \frac{\dot{g}L}{2k} \Big] x + T_1 \Big]_{x=L} \\ \dot{q}_L &= -k \left[-\frac{\dot{g}x}{k} + \Big(\frac{T_2 - T_1}{L} \Big) + \frac{\dot{g}L}{2k} \Big]_{x=L} = -k \left[\Big(\frac{T_2 - T_1}{L} \Big) - \frac{\dot{g}L}{2k} \Big] \\ &= -30 \left[\Big(\frac{20 - 100}{0.1} \Big) - \frac{6 \times 10^5 \times 0.1}{2 \times 30} \Big] = 54000 \text{ W/m}^2 \\ \dot{g} \times L &= \dot{q}_o + \dot{q}_L \text{in magnitude} \end{split}$$

AL MOSSING TO THE PARTY OF THE

Ex.4. Long solid cylinder of diameter 100cm is of thermal conductivity 20W/m.°C, and heat generation 3x10⁴W/m³. If the temperature of the out surface is 30°C. Find the temperature distribution equation and heat flux.

Solution: long solid cylinder D=100cm=1m, r_o =0.5m, k=20W/m.°C, $\dot{g}=3\times10^4$ W/m³. T= T_o =30°C at r= r_o =0.5

Requirements: Temperature distribution equation and heat flux at the surface.

Analysis: The boundary condition

• At r=0
$$\frac{dT}{dr} = 0$$
 and at r=r_o T=T_o

- The differential equation $\frac{d}{dr}\left(r\frac{dT}{dr}\right) = -\frac{\dot{g}r}{k}$
- First integrating gives $r\frac{dT}{dr} = -\frac{\dot{g}r^2}{2k} + C_1$ from B.C.1 C_1 =0.0
- Then $r\frac{dT}{dr} = -\frac{\dot{g}r^2}{2k} \rightarrow \frac{dT}{dr} = -\frac{\dot{g}r}{2k}$
- Second integrating gives $T=-\frac{\dot{g}r^2}{4k}+C_2$, from B.C.2 $T_o=-\frac{\dot{g}r_o^2}{4k}+C_2$
- $C_2 = T_o + \frac{\dot{g}r_o^2}{4k}$

Then
$$T = T_o + \frac{\dot{g}r_o^2}{4k} - \frac{\dot{g}r^2}{4k} = T_o + \frac{\dot{g}}{4k}(r_o^2 - r^2)$$

 $T = T_o + \frac{\dot{g}}{4k}(r_o^2 - r^2) = 30 + \frac{10^4}{4 \times 20}[(0.5)^2 - r^2]$

T.D.E.

$$T = 30 + 125[0.25 - r^2]$$

r	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
Т	61.25	60.937 5	60	58.437 5	56.25	53.437 5	50	45.9 375	41.2 5	35.9 375	30

•
$$\dot{q}_{r=r_o} = -k \frac{dT}{dr} \Big|_{r=r_o} = -k \frac{d}{dr} \Big[T_o + \frac{\dot{g}}{4k} (r_o^2 - r^2) \Big] \Big|_{r=r_o}$$

= $-k \Big[\frac{\dot{g}}{4k} (-2r) \Big] \Big|_{r=r_o}$

•
$$\dot{q}_{r=r_0} = \frac{\dot{g}r_0}{2} = \frac{10^4 \times 0.5}{2} = 2500W/m^2$$

