[image:]
Al-Mustaqbal University
College of Sciences
Department of Cybersecurity
المرحلة الاولى- اساسيات البرمجة

كليـــة العلـــــوم
قسم الأمن السيبراني

	
Subject: Programming Fundamentals
First Stage
Lecturer: Dr. Abdulkadhem A. Abdulkadhem

[bookmark: _GoBack]Lecture (7)
Loop Statements in C++

Objective:
By the end of this lecture, students will:
1. Understand the purpose of loop statements.
2. Learn the syntax and use cases for while, do...while, and for loops.
3. Differentiate between the three types of loops and apply them in practical examples.
1. Introduction to Loops
Loops allow us to execute a block of code repeatedly until a certain condition is met.
· They help reduce redundancy and make code more efficient and readable.
· Types of loops in C++:
· while loop
· do...while loop
· for loop

2. The while Loop
· Definition: Executes a block of code as long as the given condition is true.
· Syntax:
[image:]
· Key Point: The condition is evaluated before the loop body runs.
Example:
	#include <iostream>
using namespace std;

int main() {
 int i = 1;
 while (i <= 5) {
 cout << "Iteration " << i << endl;
 i++; // Increment
 }
 return 0;
}

Use Case: Reading input until a valid value is provided.

3. The do...while Loop
· Definition: Executes the block of code once, and then repeats as long as the condition is true.
· Syntax:
[image:]
· Key Point: The condition is evaluated after the loop body runs, guaranteeing at least one execution.
Example:
	#include <iostream>
using namespace std;

int main() {
 int number;
 do {
 cout << "Enter a number greater than 10: ";
 cin >> number;
 } while (number <= 10);

 cout << "You entered: " << number << endl;
 return 0;
}

Use Case: Input validation where at least one attempt is needed.

4. The for Loop
· Definition: Ideal for situations where the number of iterations is known beforehand.
· Syntax:
[image:]
· Key Point: Combines initialization, condition-checking, and increment in one line.
Example:
	#include <iostream>
using namespace std;

int main() {
 for (int i = 1; i <= 5; i++) {
 cout << "Iteration " << i << endl;
 }
 return 0;
}

Use Case: Iterating through arrays or a fixed range of values.

5. Comparison of Loop Statements
	Feature
	while
	do...while
	for

	Condition Check
	Before the loop
	After the loop
	Before the loop

	Best Use Case
	Unknown iterations
	At least one iteration needed
	Known iterations

6. Practical Example
Task: Print the sum of numbers from 1 to 10 using all three loops.
	Using while:

	int sum = 0, i = 1;
while (i <= 10) {
 sum += i;
 i++;
}
cout << "Sum: " << sum << endl;

	Using do...while:

	int sum = 0, i = 1;
do {
 sum += i;
 i++;
} while (i <= 10);
cout << "Sum: " << sum << endl;

	Using for:

	int sum = 0;
for (int i = 1; i <= 10; i++) {
 sum += i;
}
cout << "Sum: " << sum << endl;

7. Common Mistakes
1. Infinite Loops: Forgetting to update the variable in the loop body.
Example:
	int i = 1;
while (i <= 5) {
 cout << i << endl; // No increment
}

2. Incorrect Condition: Using a wrong or overly restrictive condition.
	 int number = 0;
 // Trying to enter a positive number
 do {
 cout << "Enter a positive number: ";
 cin >> number;
 } while (number > 0); // Incorrect condition: This should be "number <= 0"
 cout << "You entered: " << number << endl;

2024-2025
image3.png
General Form of statement:

for (initialization ; continuation condition ; update)
statement! ;

for (initialization ; continuation condition ; update)

{

statementl ;
statement2 ;

image1.png
-
General Form of While statement:

while (condition)
statementl ;

while (condition)

{

statement! ;
statement2 ;

statement-n ;

H

T
@ Statement s

image2.png
General Form of Do / While statement:

do

statement! ;
while (condition);

do
{

statementl ;
statement2 ;

statement-n ;

H

while (condition);

Statement s

S

image4.png

