

Mathematics and Biostatistics

First Stage

LECTURE 4 Derivatives

BY

Asst. Lecturer Sajjad Ibrahim Ismael

Asst. Lecturer Rusul Khalil Hussein

2024-2025

OUTLINE

- Line tangent and derivatives
- Differentiation rules
- Derivative of trigonometric function
- Practice exercises

1. Line Tangent and Derivatives

Tangent Line Definition: A tangent line to a curve at a given point is a straight line that just
"touches" the curve at that point without crossing it (locally). Its slope is given by the derivative
of the function at that point.

Example:

Given $f(x) = x^2$, find the equation of the tangent line at x = 2.

- 1. Derivative: f'(x) = 2x
- 2. Slope at x = 2: f'(2) = 4
- 3. Point on the curve: (2,f(2))=(2,4)
- 4. Equation of tangent: y-4=4(x-2), simplified to y=4x-4.

Find the equation of the tangent line to $f(x)=x^2+3x-5$ at x=2.

Solution:

1. Find f'(x):

$$f(x) = x^2 + 3x - 5$$
$$f'(x) = 2x + 3$$

2. Find the slope at x=2:

$$f'(2) = 2(2) + 3 = 4 + 3 = 7$$

3. Find the point on the curve:

$$f(2) = (2)^2 + 3(2) - 5 = 4 + 6 - 5 = 5$$

So the point is $(2,5)$.

4. Find the equation of the tangent line:

Using the point-slope form $y-y_1=m(x-x_1)$: y-5=7(x-2) Simplify: y=7x-14+5, so y=7x-9.

Tangent Line: y = 7x - 9.

2. Differentiation Rules

- Constant Rule: $\frac{d}{dx}[c] = 0$
- Power Rule: $\frac{d}{dx}[x^n] = nx^{n-1}$
- Sum Rule: $\frac{d}{dx}[f(x)+g(x)]=f'(x)+g'(x)$
- Product Rule: $rac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$
- Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$
- Chain Rule: $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$

$$\frac{d}{dx}[x^n] = nx^{n-1}$$

Example: Differentiate $f(x) = x^4$.

$$f'(x) = 4x^{4-1} = 4x^3.$$

$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

Example: Differentiate $h(x) = x^3 + 2x^2 - x + 7$.

$$h'(x) = rac{d}{dx}[x^3] + rac{d}{dx}[2x^2] - rac{d}{dx}[x] + rac{d}{dx}[7]$$

$$h'(x) = 3x^2 + 4x - 1 + 0 = 3x^2 + 4x - 1.$$

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

Example: Differentiate $f(x) = (x^2)(\sin x)$.

$$f'(x) = rac{d}{dx}[x^2] \cdot \sin x + x^2 \cdot rac{d}{dx}[\sin x]$$
 $f'(x) = 2x \cdot \sin x + x^2 \cdot \cos x.$

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

Example: Differentiate $f(x) = \frac{x^2}{\sin x}$.

$$f'(x) = rac{rac{d}{dx}[x^2] \cdot \sin x - x^2 \cdot rac{d}{dx}[\sin x]}{(\sin x)^2}$$
 $f'(x) = rac{2x \cdot \sin x - x^2 \cdot \cos x}{\sin^2 x}.$

3. Derivatives of Trigonometric Functions

•
$$\frac{d}{dx}[\sin x] = \cos x$$

•
$$\frac{d}{dx}[\cos x] = -\sin x$$

•
$$\frac{d}{dx}[\tan x] = \sec^2 x$$

•
$$\frac{d}{dx}[\csc x] = -\csc x \cot x$$

•
$$\frac{d}{dx}[\sec x] = \sec x \tan x$$

•
$$\frac{d}{dx}[\cot x] = -\csc^2 x$$

Example: Differentiate $f(x) = \sin x \cos x$.

Use the product rule:

$$f'(x) = \frac{d}{dx}[\sin x] \cdot \cos x + \sin x \cdot \frac{d}{dx}[\cos x]$$
$$f'(x) = (\cos x)(\cos x) + (\sin x)(-\sin x)$$
$$f'(x) = \cos^2 x - \sin^2 x.$$

Exercise 1: Tangent Line

Find the equation of the tangent line to $f(x) = x^3 + 2x - 4$ at x = 1.

Solution:

- 1. $f'(x) = 3x^2 + 2$.
- 2. $f'(1) = 3(1)^2 + 2 = 5$.
- 3. Point: $f(1) = (1)^3 + 2(1) 4 = -1$.
- 4. Equation: y (-1) = 5(x 1), or y = 5x 6.

Exercise 2: Product Rule

Differentiate $f(x) = x^2 e^x$.

Solution:

$$f'(x)=rac{d}{dx}[x^2]\cdot e^x+x^2\cdotrac{d}{dx}[e^x] \ f'(x)=2xe^x+x^2e^x=e^x(2x+x^2).$$

Exercise 3: Trigonometric Derivatives

Differentiate $f(x) = \tan x + \sec x$.

Solution:

$$f'(x) = rac{d}{dx} [an x] + rac{d}{dx} [ext{sec } x]$$

$$f'(x) = \sec^2 x + \sec x \tan x.$$

Homework exercises

- 1. Find the equation of the tangent line to $f(x) = 3x^2 5x + 2$ at x = 1.
- 2. Find the slope of the tangent line to $f(x) = \sqrt{x}$ at x = 4.
- 3. Compute the derivative of $f(x) = 5x^3 2x^2 + x 7$.
- 4. Compute the derivative of $g(x) = \frac{2x+1}{x^2}$.
- 5. Differentiate $h(x) = \sin^2(x)$.
- 6. Compute $\frac{d}{dx}[\tan(x) + \sec(x)]$.
- 7. Compute $\frac{d}{dx}[(3x^2+1)(\sin x)]$.
- 8. Differentiate $f(x) = e^{x^2} \sin(x^3)$.

Thanks for lessening ..

Any questions?