

Al Mustaqbal University College of Medicine

Computer Science

Lecture 3 Computer Number System

Dr. Ahmed Hasan Al-Janabi <u>Ahmed.janabi@uomus.edu.iq</u> And Dr Mohammed Fadhil <u>mohammed.fadhil1@uomus.edu.iq</u>

What is Number System

A <u>number system</u> is a system representing numbers. It is also called the system of numeration and it defines a set of values to represent a quantity. These numbers are used as digits and the most common ones are 0 and 1, that are used to represent binary numbers. Digits from 0 to 9 are used to represent other types of number systems.

Types of Number Systems

There are different types of number systems in which the four main types are:

Binary number system

(Base - 2) like that $(110101)_2$

Octal number system

(Base - 8) like that $(826)_8$

Hexadecimal number system

(Base - 16) like that $(27FBE)_{16}$

Decimal number system

(Base - 10) like that $(102345)_{10}$

Binary Number System

The binary number system uses only two digits: 0 and 1. The numbers in this system have a <u>base</u> of 2. The binary system is applied internally by almost all latest computers and computer-based devices because of its direct implementation in electronic circuits using logic gates. Every digit is referred to as a bit. binary number, the rightmost digit is called least significant bit (LSB) and leftmost digit is called most significant bit (MSB). The binary number are represent like (110101)₂

1	1	0	0	1	1
MSB					LSB

Decimal Number System

Decimal number system is a **base 10** number system having 10 digits from 0 to 9. This means that any numerical quantity can be represented using these 10 digits. Decimal number system is also a positional value system. This means that the value of digits will depend on its position. Let us take an example to understand this. 12

$$234_{10} = 1 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0$$

= 1000 + 200 + 30 + 4

 $= 1234_{10}$

Binary Number System

Binary number system conversion into decimal And decimal equivalent of this number is sum of product of each digit with its positional value.

Binary to Decimal conversation

 $110010_{2} = 1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$ = 32 + 16 + 0 + 0 + 2 + 0 $= 50_{10}$

Decimal to Binary Conversion

To convert Decimal to binary numbers, the following steps should be followed:-

- 1. Take any decimal number and divide it by "2". After dividing, you will get some results along with the remainder.
- 2. If the decimal number chosen by you is even, then the result will be in a whole number and it will give the remainder 0.
- 3. If the decimal number chosen by you is odd, then the number will not be divided fully and you will get the remainder "1".
- 4. Continue dividing the number till you get the quotient 0
 - 5. Now place all the remainders in the series of Least Significant Bit (LSB) at the top and the Most Significant bit (MSB) at the bottom.

Decimal to Binary Conversion Example Let us Convert the Decimal Number 75 into a Binary Number. 1001011

Division of Decimal Number by 2	Quotient	Remainder	Binary
75/2	37	1	(LSB) 1
37/2	18	1	1
18/2	9	0	0
9/2	4	1	1
4/2	2	0	0
2/2	1	0	0
1/2	0	1	(MSB) 1

• 128 64 32 16 8 4 2 1

• Target --> 102

• 01100110

THANKYOU ③