

كلية الهندسة والتقنيات الهندسية قسم تقنيات الحاسوب مادة مباديء الرقمية المرحلة الاولى - الكورس الاول

Lec._9 K-map forms:

In many digital circuits and practical problems, we need to find expressions with minimum variables. We can minimize Boolean expressions of 3, 4 variables very easily using K-map without using any Boolean algebra theorems.

K-map can take two forms:

- 1. Sum of product (SOP)
- 2. Product of Sum (POS)

According to the need of problem. K-map is a table-like representation, but it gives more information than the TABLE. We fill a grid of the K-map with 0's and 1's then solve it by making groups.

Steps to Solve Expression using K-map

- 1. Select the K-map according to the number of variables.
- 2. Identify minterms or maxterms as given in the problem.
- 3. For SOP put 1's in blocks of K-map respective to the minterms (0's elsewhere).
- 4. For POS put 0's in blocks of K-map respective to the max terms (1's elsewhere).
- 5. Make rectangular groups containing total terms in power of two like 2,4,8 ..(except 1) and try to cover as many elements as you can in one group.
- 6. From the groups made in step 5 find the product terms and sum them up for SOP form.

SOP FORM

1. K-map of 3 variables

K-map SOP form for 3 variables

كلية الهندسية والتقنيات الهندسية قسم تقنيات الحاسوب مادة مباديء الرقمية المرحلة الاولى - الكورس الاول

Z=?A,B,C(1,3,6,7)

From **red** group we get product term— A'C From **green** group we get product term— AB Summing these product terms we get- **Final expression (A'C+AB)**

2. K-map for 4 variables

K-map 4 variable SOP form

F(P,Q,R,S)=?(0,2,5,7,8,10,13,15)
From **red** group we get product term— QS
From **green** group we get product term— Q'S'
Summing these product terms we get- **Final expression (QS+Q'S')**.

POS FORM

1. K-map of 3 variables

كلية الهندسية والتقنيات الهندسية قسم تقنيات الحاسوب مادة مباديء الرقمية المرحلة الاولى - الكورس الاول

K-map 3 variable POS form

From red group we find terms

А В

Taking complement of these two

A' B

Now **sum** up them

(A' + B')

From brown group we find terms

3 (

Taking complement of these two terms

B' C'

Now sum up them

(B'+C')

From **yellow** group we find terms

A' B' C'

Taking complement of these two

A B C

Now **sum** up them

(A + B + C)

We will take product of these three terms : Final expression -

(A' + B') (B' + C') (A + B + C)

2. K-map of 4 variables

كلية الهندسة والتقنيات الهندسية قسم تقنيات الحاسوب مادة مباديء الرقمية المرحلة الاولى - الكورس الاول

K-map 4 variable POS form

F(A,B,C,D)=?(3,5,7,8,10,11,12,13)

From green group we find terms

C' D B

Taking their complement and summing them (C+D'+B')

From red group we find terms

C D A'

Taking their complement and summing them (C'+D'+A)

From **blue** group we find terms

A C, D,

Taking their complement and summing them (A'+C+D)

كلية الهندسية والتقنيات الهندسية قسم تقنيات الحاسوب مادة مباديء الرقمية المرحلة الاولى - الكورس الاول

From **brown** group we find terms

A B'C

Taking their complement and summing them (A'+B+C')

Finally we express these as product -(C+D'+B').(C'+D'+A).(A'+C+D).(A'+B+C')

*The correct form is (POS of F)=(SOP of F')