Lecture 7 - Flexure

Lecture Goals

- Basic Concepts
- Rectangular Beams
- Non-uniform beams
- Safety factors
- Loading and Resistance
- Balanced Beams

Example of rectangular reinforced concrete beam.

Given a rectangular beam

$$f_c = 4000 \text{ psi}$$

$$f_y = 60 \text{ ksi} (4 \# 7 \text{ bars})$$

$$b = 12 \text{ in. } d = 15.5 \text{ in. } h = 18 \text{ in.}$$

Find the neutral axis.

Find the moment capacity of the beam.

Determine the area of steel, #7 bar has 0.6 in².

$$A_{\rm s} = 4(0.6 \text{ in}^2) = 2.4 \text{ in}^2$$

The β value is $\beta_1 = 0.85$ because the concrete has a $f_c = 4000$ psi.

From equilibrium

$$C = T$$
$$0.85 f_{c} b a = f_{y} A_{s}$$

$$a = \frac{f_y A_s}{0.85 f_c b} = \frac{(60 \text{ ksi})(2.4 \text{ in}^2)}{0.85(4 \text{ ksi})(12 \text{ in})} = 3.53 \text{ in}.$$

The neutral axis is

$$c = \frac{a}{\beta_1} = \frac{3.53 \text{ in.}}{0.85} = 4.152 \text{ in.}$$

Check to see whether or not the steel has yielded.

$$\varepsilon_{y} = \frac{f_{y}}{E_{s}} = \frac{60 \text{ ksi}}{29000 \text{ ksi}} = 0.00207$$

Check the strain in the steel

$$\varepsilon_{s} = \left(\frac{d-c}{c}\right)(0.003)$$
Steel yielded!
$$= \left(\frac{15.5 \text{ in.} - 4.152 \text{ in.}}{4.152 \text{ in.}}\right)(0.003) = 0.0082 > 0.000207$$

Compute moment capacity of the beam.

$$M_{\rm n} = A_{\rm s} f_{\rm y} \left(d - \frac{a}{2} \right)$$

= $(2.4 \text{ in}^2)(60 \text{ ksi}) \left(15.5 \text{ in.} - \frac{3.53 \text{ in.}}{2} \right)$
= $1979 \text{ k-in.} \implies 164.8 \text{ k-ft.}$

For a non-rectangular beam

For the given beam with concrete rated at $f_c = 6000$ psi and the steel is rated at $f_s = 60,000$ psi. d = 12.5 in.

- (a) Determine the area of the steel for a balanced system.
- (b) Determine the moment capacity of the beam. M_n
- (c) Determine the NA.

15"

For a non-rectangular beam

The area of the concrete section is

$$A_{c} = (6 \text{ in.})(3 \text{ in.}) + (10 \text{ in.})(2 \text{ in.})$$

= 38 in²

The force due to concrete forces.

=193,000 lb.

$$C = 0.85 f_{c} A_{c}$$

= 0.85 (6000 psi) (38 in²)

Using equilibrium, the area of the steel can be found

Find the center of the area of concrete area

= 2.8158 in.

$$\overline{y} = \frac{\sum y_i A_i}{\sum A_i}$$

$$= \frac{(6 \text{ in.})(3 \text{ in.})(1.5 \text{ in.}) + (10 \text{ in.})(2 \text{ in.})(4 \text{ in.})}{(6 \text{ in.})(3 \text{ in.}) + (10 \text{ in.})(2 \text{ in.})}$$

The moment capacity of the beam is

$$M_{\rm n} = T(d - \overline{y})$$

= 193800 lb.(12.5 in. -2.8158 in.) $\left(\frac{1 \text{ kip}}{1000 \text{ lb}}\right)$
= 1869 k-in. \Rightarrow 155.75 k-ft.

Compute the β_1 value

$$\beta_{1} = 0.85 - 0.05 * \left(\frac{f_{c} - 4000 \text{ psi}}{1000 \text{ psi}} \right)$$

$$= 0.85 - 0.05 * \left(\frac{6000 \text{ psi} - 4000 \text{ psi}}{1000 \text{ psi}} \right)$$

$$= 0.75$$

Find the neutral axis

$$c = \frac{a}{\beta_1}$$
= $\frac{5.0 \text{ in.}}{0.75}$ = 6.67 in.

Safety Provisions

Structures and structural members must always be designed to carry some reserve load above what is expected under normal use.

Safety Provisions

There are three main reasons why some sort of safety factor are necessary in structural design.

- [1] Consequences of failure.
- [2] Variability in loading.
- [3] Variability in resistance.

Consequences of Failure

A number of subjective factors must be considered in determining an acceptable level of safety.

- Potential loss of life.
- Cost of clearing the debris and replacement of the structure and its contents.
- Cost to society.
- Type of failure warning of failure, existence of alternative load paths.

Variability in Loading

Frequency distribution of sustained component of live loads in offices.

Variability in Resistance

- Variability of the strengths of concrete and reinforcement.
- Differences between the as-built dimensions and those found in structural drawings.
- Effects of simplification made in the derivation of the members resistance.

Variability in Resistance

Comparison of measured and computed failure moments based on all data for reinforced concrete beams with $f_c > 2000$ psi.

