

Al-Mustaqbal University / College of Engineering & Technology Department (Building and Construction Techniques Engineering) Class (1st)

Subject (Mechanics) / Code (UOMU023011) Lecturer (Dr. Mayadah W. Falah) 1st/2nd term – Lecture No. & Lecture Name (Lec.No.4 Moment)

1.3 Moment of a Force

Moment is ability of the force to produce twisting or turning a body about an axis.

$$M = F \cdot d$$

where:

M: The moment of the force (N.m).

F: Applied force (N).

d: is the perpendicular distance from the axis moment to the line of action of the force.

Units: kN.m, N.m, N.mm (1 kN = 1000 N)

Sign Convention:

we will be taking clockwise as positive moment

Al-Mustaqbal University / College of Engineering & Technology Department (Building and Construction Techniques Engineering) Class (1st)

Subject (Mechanics) / Code (UOMU023011)
Lecturer (Dr. Mayadah W. Falah)

1st/2nd term – Lecture No. & Lecture Name (Lec.No.4 Moment)

Principle of moments:

The moment of a force with respect to any axis (or point) is equal to the algebraic sum of the moments of its components with respect to the same axis.

$$M = \sum F \cdot d$$

For Example: moment about point O

$$^{+}M_{O} = \sum F \cdot d$$

$$M_{O} = F_{1x} \cdot y_{1} - F_{1y} \cdot x_{1} + F_{2x} \cdot y_{2} + F_{3y} \cdot x_{3}$$

Example No. 1: Calculate the magnitude of the moment about the base point O of the 600-N force.

Al-Mustaqbal University / College of Engineering & Technology Department (Building and Construction Techniques Engineering) Class (1st)

Subject (Mechanics) / Code (UOMU023011) Lecturer (Dr. Mayadah W. Falah)

1st/2nd term – Lecture No. & Lecture Name (Lec.No.4 Moment)

Solution:

$$F_x = 600 \cos 40 = 460 N \rightarrow$$

$$F_y = 600 \sin 40 = 386 \, N \, \downarrow$$

$$^{+}M_o = \sum F \cdot d$$

$$M_o = 460 \times 4 + 386 \times 2 = 2610 \, \text{N.m}$$

Example No. 2: Compute the moment of a 100 N force applied on a cantilever beam about the fixed end A as shown in Figure.

Solution:

Resolving the force along x and y directions.

$$M_A = 100 \sin 30 \times (3 + 0.5) - 100 \cos 30 \times 0.25$$

$$M_A = 153.35 \, N.m$$

Al-Mustaqbal University / College of Engineering & Technology Department (Building and Construction Techniques Engineering) Class (1st)

Subject (Mechanics) / Code (UOMU023011) Lecturer (Dr. Mayadah W. Falah) 1st/2nd term – Lecture No. & Lecture Name (Lec.No.4 Moment)

Example No. 3: If the resultant moment about point A is (480 N.m) clockwise.

Determine the magnitude of F₃?

Solution:

$$F_{1x} = 300 \sin 30 = 150 N \rightarrow$$

$$F_{1y} = 300 \cos 30 = 259.88 \ N \ \downarrow$$

$$F_{2x} = 400 \times \cos 60 = 200 N \leftarrow$$

$$F_{2y} = 400 \times \sin 60 = 346.41 \, N \, \downarrow$$

$$c = \sqrt{3^2 + 4^2} = 5$$

$$F_{3x} = F_3 \times \frac{3}{5} = 0.6 F_3 N \rightarrow$$

$$F_{3y} = F_3 \times \frac{4}{5} = 0.8 \, F_3 \, N \, \downarrow$$

$$^{+}M_{A} = \sum F \cdot d$$

$$480 = F_{1y} \times 0.2 + F_{2y} \times 0.5 - F_{3x} \times 0.4 + F_{3y} \times 0.5$$

Al-Mustagbal University / College of Engineering & Technology **Department (Building and Construction Techniques Engineering)** Class (1st)

Subject (Mechanics) / Code (UOMU023011)

$$480 = 259.88 \times 0.2 + 346.41 \times 0.5 - 0.6 F_3$$
$$\times 0.4 + 0.8 F_3 \times 0.5$$

$$F_3 = \frac{480 - 225.167}{0.16} = 159.27 \, N$$

Problems:

1. Determine the moment of the force about O in each case.

Answer: (a)
$$M_0 = 76.6 N.m$$
 , (b) $M_0 = 64.3 N.m$, (c) $M_0 = 100 N.m$

2. Compute the moment of a 200 N force applied as shown in Figure, about points A and B.

Answer: $M_A = 848.528 \ N.m$

Al-Mustaqbal University / College of Engineering & Technology Department (Building and Construction Techniques Engineering)

Class (1st)

Subject (Mechanics) / Code (UOMU023011)
Lecturer (Dr. Mayadah W. Falah)

1st/2nd term – Lecture No. & Lecture Name (Lec.No.4 Moment)

3. Determine the resultant moment produced by the forces about point O.

Answer: $M_0 = 1253.55 N.m$

4. Determine the moment of the forces about O.

Answer: $M_0 = 2.460 \ kN.m$