Al-Mustaqbal University / College of Engineering & Technology Class; first

Subject: Differential Mathematics/Code: UOMU024013 Lecturer: Dr. Hassan Hamd Ali & M.Sc. Alaa Khalid Lecture name: Polar Coordinates

Lecture: 4
1stterm

Polar Coordinates

To define polar coordinates, we first fix an **origin** O (called the **pole**) and an **initial ray** from O (Figure 1). Usually the positive x-axis is chosen as the initial ray. Then each point P can be located by assigning to it a **polar coordinate pair** (r, θ) in which r gives the directed distance from O to P and θ gives the directed angle from the initial ray to ray OP. So we label the point P as;

$$P(r, \theta)$$
Directed distance Directed angle from from O to P initial ray to OP

For instance, the point 2 units from the origin along the ray $\theta = \pi/6$ has polar coordinates r = 2, $\theta = \pi/6$. It also has coordinates r = 2, $\theta = -11\pi/6$ (Figure 2).

The usual way to relate polar and Cartesian coordinates is shown in Figure 3 and is determined using the equation below:

Equations Relating Polar and Cartesian Coordinates $x = r \cos \theta$, $y = r \sin \theta$, $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$

Figure 3

Email: alaa.khalid.abdalreda@uomus.edu.iq

Subject: Differential Mathematics/Code: UOMU024013 Lecturer: Dr. Hassan Hamd Ali & M.Sc. Alaa Khalid **Lecture name: Polar Coordinates**

Lecture: 4 1st term

EXAMPLE

Find a polar equation for the circle $x^2 + (y - 3)^2 = 9$

$$x^{2} + (y - 3)^{2} = 9$$

$$x^{2} + y^{2} - 6y + 9 = 9$$

$$x^{2} + y^{2} - 6y = 0$$

$$r^{2} - 6r \sin \theta = 0$$

$$r = 0 \text{ or } r - 6 \sin \theta = 0$$

$$r = 6 \sin \theta$$
Includes both possibilities

EXAMPLE: Replace the following polar equations by equivalent Cartesian equations and identify their graphs.

(a)
$$r\cos\theta = -4$$

(b)
$$r^2 = 4r\cos\theta$$

(c)
$$r = \frac{4}{2\cos\theta - \sin\theta}$$

Solution We use the substitutions $r \cos \theta = x$, $r \sin \theta = y$, and $r^2 = x^2 + y^2$.

(a)
$$r\cos\theta = -4$$

The Cartesian equation: $r\cos\theta = -4$

$$x = -4$$
 Substitution

The graph: Vertical line through x = -4 on the x-axis

(b)
$$r^2 = 4r\cos\theta$$

The Cartesian equation: $r^2 = 4r\cos\theta$

$$x^2 + y^2 = 4x$$
 Substitution

$$x^2 - 4x + y^2 = 0$$

 $x^2 - 4x + 4 + y^2 = 4$ Completing the square

$$(x-2)^2 + y^2 = 4$$

Factorine

Circle, radius 2, center (h, k) = (2, 0)The graph:

(c)
$$r = \frac{4}{2\cos\theta - \sin\theta}$$

The Cartesian equation: $r(2\cos\theta - \sin\theta) = 4$

$$2r\cos\theta - r\sin\theta = 4$$
 Multiplying by r

$$2x - y = 4$$

Substitution

$$y = 2x - 4$$

Solve for y.

Al-Mustaqbal University / College of Engineering & Technology Class: first

Subject: Differential Mathematics/Code: UOMU024013 Lecturer: Dr. Hassan Hamd Ali & M.Sc. Alaa Khalid Lecture name: Polar Coordinates

Lecture: 4
1stterm

EXAMPLE Here are some plane curves expressed in terms of both polar coordinate and Cartesian coordinate equations.

Polar equation	Cartesian equivalent
$r\cos\theta=2$	x = 2
$r^2 \cos \theta \sin \theta = 4$	xy = 4
$r^2\cos^2\theta - r^2\sin^2\theta = 1$	$x^2 - y^2 = 1$
$r = 1 + 2r\cos\theta$	$y^2 - 3x^2 - 4x - 1 = 0$
$r = 1 - \cos \theta$	$x^4 + y^4 + 2x^2y^2 + 2x^3 + 2xy^2 - y^2 = 0$