
Lecture 3

Fourth stage

Medical Imaging Processing II

Histogram of Gradient Feature

Extractor

By

Asst. Prof. Dr. Mehdi Ebady Manaa
Asst. Lect. Lubna ali jalil

Feature Extraction

Feature extraction is a game-changer in the world of machine learning

algorithms. It’s actually one of favorite aspects of being a data scientist!

This is where we get to experiment the most – to engineer new features

from existing ones and improve our model’s performance. We have used

various feature extraction techniques on structured data.

What is a Feature Descriptor?

let’s clear that up first before we jump

into the HOG part, see the two images

shown below. Can you differentiate

between the objects in the image?

It is clearly see that the right image

here has a dog and the left

image has a car. Now, let

make this task slightly

more complicated –

identify the objects shown

in the image below:

Still easy, right? Can you guess what was the difference between the first

and the second case? The first pair of images had a lot of information,

like the shape of the object, its color, the edges, background, etc. On the

other hand, the second pair had much less information (only the shape

and the edges) but it was still enough to differentiate the two images. We

were easily able to differentiate the objects in the second case because it

had the necessary information we would need to identify the object. And

that is exactly what a feature descriptor does:

It is a simplified representation of the image that contains only the most

important information about the image.

There are a number of feature descriptors out there. One of them is HOG:

Histogram of Oriented Gradients

HOG Feature Descriptor

HOG, or Histogram of Oriented Gradients, is a feature descriptor that is

often used to extract features from image data. It is widely used

in computer vision tasks for object detection. An Important aspects of

HOG that makes it different from other feature descriptors:

https://cdn.analyticsvidhya.com/wp-content/uploads/2019/08/article-image-2.png
https://cdn.analyticsvidhya.com/wp-content/uploads/2019/08/article-image-2.png
https://courses.analyticsvidhya.com/courses/computer-vision-using-deep-learning-version2/?utm_source=blog&utm_medium=understand-math-HOG-feature-descriptor
https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/?utm_source=blog&utm_medium=understand-math-HOG-feature-descriptor

 The HOG descriptor focuses on the structure or the shape of an

object. This is done by extracting the gradient and orientation (or

you can say magnitude and direction) of the edges

 Additionally, these orientations are calculated in ‘localized’

portions. This means that the complete image is broken down into

smaller regions and for each region, the gradients and orientation

are calculated.

 Finally, the HOG would generate a Histogram for each of these

regions separately. The histograms are created using the gradients

and orientations of the pixel values, hence the name ‘Histogram of

Oriented Gradients’

To put a formal definition to this:

The HOG feature descriptor counts the occurrences of gradient

orientation in localized portions of an image.

Calculating the Histogram of Oriented Gradients (HOG)

Consider the below image of size (180 x 280). Let us take a

detailed look at how the HOG features will be created for this

image:

Step 1: Preprocess the Data (64 x 128)

Preprocess the image and bring down the width to height

ratio to 1:2 for example. The image size should preferably

be 64 x 128. This is because we will be dividing the image

into 8*8 and 16*16 patches to extract the features.

Step 2: Calculating Gradients (direction x and y)

The next step is to calculate the gradient for every pixel in

the image. Gradients are the small change in the x and y

directions. We need take a small patch from the image and calculate the

gradients on that:

We will get the pixel values for this patch. Let’s say we generate the

below pixel matrix for the given patch (as an example not real values)

I have highlighted the pixel value 85. Now, to determine the gradient (or

change) in the x-direction, we need to subtract the value on the left from

the pixel value on the right. Similarly, to calculate the gradient in the y-

direction, we will subtract the pixel value below from the pixel value

above the selected pixel.

Hence the resultant gradients in the x and y direction for this pixel are:

 Change in X direction(Gx) = 89 – 78 = 11

 Change in Y direction(Gy) = 68 – 56 = 8

This process will give us two new matrices – one storing gradients in the

x-direction and the other storing gradients in the y direction. This is

similar to using kernel in the previous lecture. The magnitude would be

higher when there is a sharp change in intensity, such as around the

edges. the gradients in both x and y direction separately is calculated. The

same process is repeated for all the pixels in the image. The next step

would be to find the magnitude and orientation using these values.

 Step 3: Calculate the Magnitude and Orientation

Using the gradients we calculated in the last step, we will now determine

the magnitude and direction for each pixel value. For this step, we will

be using the Pythagoras theorem Take a look at the image below:

The gradients are basically the base and

perpendicular here. So, for the previous example, we

had Gx and Gy as 11 and 8. Let’s apply the

Pythagoras theorem to calculate the total gradient

magnitude:

 Total Gradient Magnitude = √[(Gx)2+(Gy)2]

 Total Gradient Magnitude = √[(11)
2
+(8)

2
] = 13.6

Next, calculate the orientation (or direction) for the same pixel. We

know that we can write the tan for the angles:

tan(Φ) = Gy / Gx

Hence, the value of the angle would be:

Φ = atan(Gy / Gx)

The orientation comes out to be 36 when we plug in the values. So now,

for every pixel value, we have the total gradient (magnitude) and the

orientation (direction). We need to generate the histogram using these

gradients and orientations.

Methods to Create Histograms using Gradients and Orientation

Method 1:

We will take each pixel value, find the

orientation of the pixel and update the

frequency table. Here is the process for

the highlighted pixel (85). Since the

orientation for this pixel is 36, we will

add a number against angle value 36,

denoting the frequency:

The same process is repeated for all the pixel values, and we end up with

a frequency table that denotes angles and the occurrence of these

angles in the image. This frequency table can be used to generate a

histogram with angle values on the x-axis and the frequency on the y-

axis. That’s one way to create a histogram. Note that here the bin value of

the histogram is 1. Hence we get about 180 different buckets, each

representing an orientation value. Another method is to create the

histogram features for higher bin values.

Method 2:

This method is similar to the

previous method, except that here

we have a bin size of 20. So, the

number of buckets we would get

here is 9. Again, for each pixel,

we will check the orientation, and

store the frequency of the

orientation values in the form of a

9 x 1 matrix. Plotting this would

give us the histogram:

Method 3:

The above two methods use only the

orientation values to generate

histograms and do not take the

gradient value into account. Here is

another way in which we can generate

the histogram – instead of using the

frequency, we can use the gradient

magnitude to fill the values in the

matrix. Below is an example of this:

You might have noticed that we are using the orientation value of 36, and

updating the bin 20 only. Additionally, we should give some weight to

the other bin as well.

Method 4:

Here, we will add the contribution of a

pixel’s gradient to the bins on either

side of the pixel gradient. Remember,

the higher contribution should be to the

bin value which is closer to the

orientation.

Step 4: Calculate Histogram of Gradients in 8×8 cells (9×1)

The histograms created in the HOG feature descriptor

are not generated for the whole image. Instead, the

image is divided into 8×8 cells, and the histogram of

oriented gradients is computed for each cell. Why do

you think this happens? By doing so, we get the

features (or histogram) for the smaller patches which

in turn represent the whole image. We can certainly

change this value here from 8 x 8 to 16 x 16 or 32 x

32. If we divide the image into 8×8 cells and generate

the histograms, we will get a 9 x 1 matrix for each

cell. This matrix is generated using method 4 that we

discussed in the previous section. Once we have

generated the HOG for the 8×8 patches in the image,

the next step is to normalize the histogram.

 Step 5: Normalize gradients in 16×16 cell (36×1)

Before we understand how this is done, it’s

important to understand why this is done in

the first place. Although we already have the

HOG features created for the 8×8 cells of the

image, the gradients of the image are

sensitive to the overall lighting. This means

that for a particular picture, some portion of

the image would be very bright as compared

to the other portions. We cannot completely

eliminate this from the image. But we can reduce this lighting variation

by normalizing the gradients by taking 16×16 blocks. Here is an example

that can explain how 16×16 blocks are created: Here, we will be

combining four 8×8 cells to create a 16×16 block. And we already know

that each 8×8 cell has a 9×1 matrix for a histogram. So, we would have

four 9×1 matrices or a single 36×1 matrix. To normalize this matrix, we

will divide each of these values by the square root of the sum of squares

of the values. Mathematically, for a given vector V:

V = [a1, a2, a3, ….a36]

We calculate the root of the sum of squares:

k = √(a1)
2
+ (a2)

2
+ (a3)

2
+ …. (a36)

2

And divide all the values in the vector V

with this value k:

The resultant would be a normalized vector of size 36×1.

 Step 6: Features for the complete image

We are now at the final step of generating HOG

features for the image. So far, we have created

features for 16×16 blocks of the image. Now,

we will combine all these to get the features for

the final image. Can you guess what would be

the total number of features that we will have

for the given image? We would first need to find out how many such

16×16 blocks would we get for a single 64×128 image:

We would have 105 (7×15) blocks of 16×16. Each of these 105 blocks

has a vector of 36×1 as features. Hence, the total features for the image

would be 105 x 36×1 = 3780 features.

