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Feature Extraction  

Feature extraction is a game-changer in the world of machine learning 

algorithms. It’s actually one of favorite aspects of being a data scientist! 

This is where we get to experiment the most – to engineer new features 

from existing ones and improve our model’s performance. We have used 

various feature extraction techniques on structured data. 

What is a Feature Descriptor? 

let’s clear that up first before we jump 

into the HOG part, see the two images 

shown below. Can you differentiate 

between the objects in the image? 

 

It is clearly see that the right image 

here has a dog and the left 

image has a car. Now, let 

make this task slightly 

more complicated – 

identify the objects shown 

in the image below: 

 

Still easy, right? Can you guess what was the difference between the first 

and the second case? The first pair of images had a lot of information, 

like the shape of the object, its color, the edges, background, etc. On the 

other hand, the second pair had much less information (only the shape 

and the edges) but it was still enough to differentiate the two images. We 

were easily able to differentiate the objects in the second case because it 

had the necessary information we would need to identify the object. And 

that is exactly what a feature descriptor does: 

 

It is a simplified representation of the image that contains only the most 

important information about the image. 

 

There are a number of feature descriptors out there. One of them is HOG: 

Histogram of Oriented Gradients 

HOG Feature Descriptor 

HOG, or Histogram of Oriented Gradients, is a feature descriptor that is 

often used to extract features from image data. It is widely used 

in computer vision tasks for object detection. An Important aspects of 

HOG that makes it different from other feature descriptors: 

https://cdn.analyticsvidhya.com/wp-content/uploads/2019/08/article-image-2.png
https://cdn.analyticsvidhya.com/wp-content/uploads/2019/08/article-image-2.png
https://courses.analyticsvidhya.com/courses/computer-vision-using-deep-learning-version2/?utm_source=blog&utm_medium=understand-math-HOG-feature-descriptor
https://www.analyticsvidhya.com/blog/2018/10/a-step-by-step-introduction-to-the-basic-object-detection-algorithms-part-1/?utm_source=blog&utm_medium=understand-math-HOG-feature-descriptor


 The HOG descriptor focuses on the structure or the shape of an 

object. This is done by extracting the gradient and orientation (or 

you can say magnitude and direction) of the edges 

 Additionally, these orientations are calculated in ‘localized’ 

portions. This means that the complete image is broken down into 

smaller regions and for each region, the gradients and orientation 

are calculated.  

 Finally, the HOG would generate a Histogram for each of these 

regions separately. The histograms are created using the gradients 

and orientations of the pixel values, hence the name ‘Histogram of 

Oriented Gradients’ 

 
To put a formal definition to this: 

The HOG feature descriptor counts the occurrences of gradient 

orientation in localized portions of an image. 

 
Calculating the Histogram of Oriented Gradients (HOG) 

Consider the below image of size (180 x 280). Let us take a 

detailed look at how the HOG features will be created for this 

image: 

Step 1: Preprocess the Data (64 x 128)  

Preprocess the image and bring down the width to height 

ratio to 1:2 for example. The image size should preferably 

be 64 x 128. This is because we will be dividing the image 

into 8*8 and 16*16 patches to extract the features.                                                                                                   

Step 2: Calculating Gradients (direction x and y) 

The next step is to calculate the gradient for every pixel in 

the image. Gradients are the small change in the x and y 

directions. We need take a small patch from the image and calculate the 

gradients on that: 

 

We will get the pixel values for this patch. Let’s say we generate the 

below pixel matrix for the given patch (as an example not real values) 



                               

I have highlighted the pixel value 85. Now, to determine the gradient (or 

change) in the x-direction, we need to subtract the value on the left from 

the pixel value on the right. Similarly, to calculate the gradient in the y-

direction, we will subtract the pixel value below from the pixel value 

above the selected pixel. 

Hence the resultant gradients in the x and y direction for this pixel are: 

 Change in X direction(Gx) = 89 – 78 = 11 

 Change in Y direction(Gy) = 68 – 56 = 8 

This process will give us two new matrices – one storing gradients in the 

x-direction and the other storing gradients in the y direction. This is 

similar to using kernel in the previous lecture. The magnitude would be 

higher when there is a sharp change in intensity, such as around the 

edges. the gradients in both x and y direction separately is calculated. The 

same process is repeated for all the pixels in the image. The next step 

would be to find the magnitude and orientation using these values. 

 Step 3: Calculate the Magnitude and Orientation 

Using the gradients we calculated in the last step, we will now determine 

the magnitude and direction for each pixel value. For this step, we will 

be using the Pythagoras theorem Take a look at the image below: 

The gradients are basically the base and 

perpendicular here. So, for the previous example, we 

had Gx and Gy as 11 and 8. Let’s apply the 

Pythagoras theorem to calculate the total gradient 

magnitude: 

 Total Gradient Magnitude = √[(Gx)2+(Gy)2] 

 Total Gradient Magnitude = √[(11)
2
+(8)

2
] = 13.6 



Next, calculate the orientation (or direction) for the same pixel. We 

know that we can write the tan for the angles: 

tan(Φ) = Gy / Gx 

Hence, the value of the angle would be: 

Φ = atan(Gy / Gx) 

The orientation comes out to be 36 when we plug in the values. So now, 

for every pixel value, we have the total gradient (magnitude) and the 

orientation (direction). We need to generate the histogram using these 

gradients and orientations. 

Methods to Create Histograms using Gradients and Orientation 

Method 1: 

We will take each pixel value, find the 

orientation of the pixel and update the 

frequency table. Here is the process for 

the highlighted pixel (85). Since the 

orientation for this pixel is 36, we will 

add a number against angle value 36, 

denoting the frequency: 

The same process is repeated for all the pixel values, and we end up with 

a frequency table that denotes angles and the occurrence of these 

angles in the image. This frequency table can be used to generate a 

histogram with angle values on the x-axis and the frequency on the y-

axis. That’s one way to create a histogram. Note that here the bin value of 

the histogram is 1. Hence we get about 180 different buckets, each 

representing an orientation value. Another method is to create the 

histogram features for higher bin values. 

Method 2: 

This method is similar to the 

previous method, except that here 

we have a bin size of 20. So, the 

number of buckets we would get 

here is 9. Again, for each pixel, 

we will check the orientation, and 

store the frequency of the 

orientation values in the form of a 

9 x 1 matrix. Plotting this would 

give us the histogram: 



Method 3: 

The above two methods use only the 

orientation values to generate 

histograms and do not take the 

gradient value into account. Here is 

another way in which we can generate 

the histogram – instead of using the 

frequency, we can use the gradient 

magnitude to fill the values in the 

matrix. Below is an example of this: 

You might have noticed that we are using the orientation value of 36, and 

updating the bin 20 only. Additionally, we should give some weight to 

the other bin as well. 

Method 4: 

Here, we will add the contribution of a 

pixel’s gradient to the bins on either 

side of the pixel gradient. Remember, 

the higher contribution should be to the 

bin value which is closer to the 

orientation. 

   

Step 4: Calculate Histogram of Gradients in 8×8 cells (9×1) 

The histograms created in the HOG feature descriptor 

are not generated for the whole image. Instead, the 

image is divided into 8×8 cells, and the histogram of 

oriented gradients is computed for each cell. Why do 

you think this happens? By doing so, we get the 

features (or histogram) for the smaller patches which 

in turn represent the whole image. We can certainly 

change this value here from 8 x 8 to 16 x 16 or 32 x 

32. If we divide the image into 8×8 cells and generate 

the histograms, we will get a 9 x 1 matrix for each 

cell. This matrix is generated using method 4 that we 

discussed in the previous section. Once we have 

generated the HOG for the 8×8 patches in the image, 

the next step is to normalize the histogram. 



 Step 5: Normalize gradients in 16×16 cell (36×1) 

Before we understand how this is done, it’s 

important to understand why this is done in 

the first place. Although we already have the 

HOG features created for the 8×8 cells of the 

image, the gradients of the image are 

sensitive to the overall lighting. This means 

that for a particular picture, some portion of 

the image would be very bright as compared 

to the other portions. We cannot completely 

eliminate this from the image. But we can reduce this lighting variation 

by normalizing the gradients by taking 16×16 blocks. Here is an example 

that can explain how 16×16 blocks are created: Here, we will be 

combining four 8×8 cells to create a 16×16 block. And we already know 

that each 8×8 cell has a 9×1 matrix for a histogram. So, we would have 

four 9×1 matrices or a single 36×1 matrix. To normalize this matrix, we 

will divide each of these values by the square root of the sum of squares 

of the values. Mathematically, for a given vector V: 

V = [a1, a2, a3, ….a36] 

We calculate the root of the sum of squares: 

k = √(a1)
2
+ (a2)

2
+ (a3)

2
+ …. (a36)

2
 

And divide all the values in the vector V 

with this value k: 

  

The resultant would be a normalized vector of size 36×1. 

 Step 6: Features for the complete image 

We are now at the final step of generating HOG 

features for the image. So far, we have created 

features for 16×16 blocks of the image. Now, 

we will combine all these to get the features for 

the final image. Can you guess what would be 

the total number of features that we will have 

for the given image? We would first need to find out how many such 

16×16 blocks would we get for a single 64×128 image: 

We would have 105 (7×15) blocks of 16×16. Each of these 105 blocks 

has a vector of 36×1 as features. Hence, the total features for the image 

would be 105 x 36×1 = 3780 features. 


