

Department of biology

((GENERAL MATHEMATICS))

1st stage

Week 7- lecture 7

Trigonometric Functions

الدوال المثلثية

By Mm.Ali Alawadi

Trigonometric Functions and Their Derivatives

What Are Trigonometric Functions?

Trigonometric functions describe the relationships between the angles and sides of a right triangle. The basic functions are:

- 1. Sine $(\sin(x))$
- 2. Cosine $(\cos(x))$
- 3. Tangent $(\tan(x))$
- 4. Cosecant $(\csc(x))$
- 5. Secant (sec(x))
- 6. Cotangent ($\cot(x)$)

Derivatives of Trigonometric Functions

The derivatives of trigonometric functions are fundamental and commonly used in calculus.

Function	Derivative
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$sec^2(x)$
$\csc(x)$	$-\csc(x)\cot(x)$
sec(x)	sec(x) tan(x)
$\cot(x)$	$-\csc^2(x)$

Examples:-

1. Find the derivative of $f(x) = \sin(x)$:

$$f'(x) = \cos(x)$$

2. Find the derivative of $f(x) = \cos(x) + \sin(x)$:

$$f'(x) = -\sin(x) + \cos(x)$$

3. Find the derivative of $f(x) = 2 \tan(x)$:

$$f'(x) = 2\sec^2(x)$$

4. Find the derivative of $f(x) = \sin(2x)$:

$$f'(x) = 2\cos(2x)$$

5. Find the derivative of $f(x) = \cos(3x)$:

$$f'(x) = -3\sin(3x)$$

6. Find the derivative of $f(x) = \tan(\pi x)$:

$$f'(x) = \pi \sec^2(\pi x)$$

7. Find the derivative of $f(x) = x \sin(x)$:

$$f'(x) = x\cos(x) + \sin(x)$$

8. Find the derivative of $f(x) = x^2 \cos(x)$:

$$f'(x) = 2x\cos(x) - x^2\sin(x)$$

9. Find the derivative of $f(x)=\sin^2(x)$:

$$f'(x) = 2\sin(x)\cos(x)$$

10. Find the derivative of $f(x) = \cos^3(x)$:

$$f'(x) = -3\cos^2(x)\sin(x)$$

11. Find the derivative of $f(x) = \sin(\cos(x))$:

$$f'(x) = \cos(\cos(x)) \cdot (-\sin(x))$$

12. Find the derivative of $f(x) = \tan(\sin(x))$:

$$f'(x) = \sec^2(\sin(x)) \cdot \cos(x)$$

Key Identities for Simplification

1.
$$\sin^2(x) + \cos^2(x) = 1$$

2.
$$1 + \tan^2(x) = \sec^2(x)$$

3.
$$1 + \cot^2(x) = \csc^2(x)$$