

Department of Cyber Security Programming Fundamentals – Lecture (9)

Lecturer Name

1st Stage

Dr. Abdulkadhem A. Abdulkadhem

Introduction

The < cmath> library in C++ provides essential mathematical functions to perform complex calculations. These functions are widely used in scientific computations, engineering applications, and problem-solving.

In this lecture, we will cover:

- 1. Overview of <cmath> library functions.
- 2. Translation of mathematical equations into C++ expressions.
- 3. Understanding and visualizing the order of operations.

1. Overview of <cmath> Functions

Below is a table summarizing key functions in the <cmath> library:

Functions

Function	Description	Example	Result
sqrt(x)	Computes the square root of x.	sqrt(16)	4.0
роw(х, у)	Computes x raised to the power $y(x^y)$.	pow(2, 3)	8.0
abs(x)	Returns the absolute value of an integer x.	abs(-5)	5
fabs(x)	Returns the absolute value of a floating-point number x.	fabs(-5.6)	5.6
round(x)	Rounds x to the nearest integer.	round(4.5)	5
ceil(x)	Rounds x up to the smallest integer greater than or equal to x .	ceil(4.2)	5
floor(x)	Rounds \times down to the largest integer less than or equal to \times .	floor(4.8)	4
log(x)	Computes the natural logarithm (base e) of x.	log(10)	2.3026
log10(x)	Computes the base-10 logarithm of x.	log10(100)	2
sin(x)	Computes the sine of \times (in radians).	sin(3.14 / 2)	1.0
cos(x)	Computes the cosine of x (in radians).	cos(3.14)	-1.0
tan(x)	Computes the tangent of \times (in radians).	tan(3.14 / 4)	1.0
exp(x)	Computes the exponential value of x (e^{x} , where $e \approx 2.71828$).	exp(1)	2.71828

Department of Cyber Security

Programming Fundamentals – Lecture (9)

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

1st Stage

Example:

```
#include <iostream>
#include <cmath>
using namespace std;
int main() {
    // Testing basic cmath functions
    cout << "ceil(5.8) = " << ceil(5.8) << endl;</pre>
    cout << "floor(5.8) = " << floor(5.8) << endl;</pre>
    cout << "abs(-4.7) = " << abs(-4.7) << endl;
    cout << "pow(3, 3) = " << pow(3, 3) << endl;
    cout << "sqrt(16) = " << sqrt(16) << endl;
    cout << "log(2.71828) = " << log(2.71828) << endl; // Approximation of e
    cout << "log10(1000) = " << log10(1000) << endl;
    // Trigonometric functions (angles in radians)
    cout << "sin(0.7854) = " << sin(0.7854) << endl; // Approx. π/4 radians
    cout << "cos(0.7854) = " << cos(0.7854) << endl;
    cout << "tan(0.7854) = " << tan(0.7854) << endl;
    return 0;
Output:
ceil(5.8) = 6
floor(5.8) = 5
abs(-4.7) = 4.7
pow(3, 3) = 27
sqrt(16) = 4
log(2.71828) = 1
log10(1000) = 3
sin(0.7854) = 0.707107
\cos(0.7854) = 0.707107
tan(0.7854) = 1
\sinh(1) = 1.1752
\cosh(1) = 1.54308
tanh(1) = 0.761594
```

2. Translating Equations into C++

To use < cmath>, we often translate mathematical equations into equivalent C++ expressions. Let's explore examples that combine functions.

Department of Cyber Security Programming Fundamentals – Lecture (9) 1st Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Example 1: Simple Equation

Write the following equation in C++ and determine its order of evaluation:

$$f=\sqrt{rac{\sin(x)+x^3}{\log(x)-x/2}}$$

Solution: C++ Expression:

f = sqrt((sin(x) + pow(x, 3)) / (log(x) - x / 2));

Order of Evaluation:

- 1. Compute sin(x).
- 2. Compute pow(x, 3).
- 3. Add sin(x) + pow(x, 3).
- 4. Compute log(x).
- 5. Compute x / 2.
- 6. Subtract log(x) x / 2.
- 7. Divide the numerator by the denominator.
- 8. Take the square root using sqrt.

Example 2: Trigonometric Equation

Write the following equation in C++:

$$g=\sqrt{rac{ an(x)-e^x}{\sin(x)+rac{x^2}{3}}}$$

Solution: C++ Expression:

g = sqrt((tan(x) - exp(x)) / (sin(x) + pow(x, 2) / 3));

Page | 4

Department of Cyber Security

Programming Fundamentals – Lecture (9)

Lecturer Name

1st Stage

Dr. Abdulkadhem A. Abdulkadhem

Order of Evaluation:

- 1. Compute tan(x).
- 2. Compute exp(x).
- 3. Subtract tan(x) exp(x).
- 4. Compute sin(x).
- 5. Compute pow(x, 2).
- 6. Divide pow(x, 2) / 3.
- 7. Add sin(x) + (pow(x, 2) / 3).
- 8. Divide the numerator by the denominator.
- 9. Take the square root using sqrt.

Example 3: Nested Equation

Write the following equation in C++:

$$h = \sqrt{rac{\ln(x) + \sqrt{x}}{\cos(x) \cdot x^4}}$$

Solution: C++ Expression:

h = sqrt((log(x) + sqrt(x)) / (cos(x) * pow(x, 4)));

Order of Evaluation:

- 1. Compute log(x).
- 2. Compute sqrt(x).
- 3. Add log(x) + sqrt(x).
- 4. Compute cos(x).
- 5. Compute pow(x, 4).
- 6. Multiply cos(x) * pow(x, 4).
- 7. Divide the numerator by the denominator.
- 8. Take the square root using sqrt.

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

1st Stage

3. Understanding Order of Operations

C++ follows **precedence rules** for operators, but < math> functions have their own evaluation order based on the equation.

- 1. Parentheses () override normal precedence.
- 2. Function calls (e.g., sqrt, pow) are evaluated from innermost to outermost.
- 3. Multiplication, Division, Addition, and Subtraction follow the standard **operator precedence**.

For complex expressions, **breaking them into smaller steps** improves readability and ensures correctness.

4. Practice Problems

Problem 1: Write the following equation in C++ and determine the order of evaluation:

$$k = \sqrt{rac{\cos(x) \cdot x^2}{\ln(x) - \tan(x)}}$$

Problem 2: Write a C++ program that calculates the value of:

$$f = \sqrt{\sin(x) \cdot \cos(x)} + \log(x^2)$$

Conclusion

The <cmath> library simplifies mathematical computations in C++. By understanding how to translate equations and evaluate operations step-by-step, you can efficiently handle complex calculations in your programs.