

P a g e | 1

Department of Cyber Security

Programming Fundamentals – Lecture (9)

1st Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

مــــــــــــــــــــــــــن م الاــــــــــســق
 الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي

Department of Cyber Security

Subject:

Programming Fundamentals

Class:

1st stage

Lecturer:

Dr. Abdulkadhem A. Abdulkadhem

Lecture: (9)

Mastering the <cmath> Library in C++

P a g e | 2

Department of Cyber Security

Programming Fundamentals – Lecture (9)

1st Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Introduction

The <cmath> library in C++ provides essential mathematical functions to perform complex

calculations. These functions are widely used in scientific computations, engineering

applications, and problem-solving.

In this lecture, we will cover:

1. Overview of <cmath> library functions.

2. Translation of mathematical equations into C++ expressions.

3. Understanding and visualizing the order of operations.

1. Overview of <cmath> Functions

Below is a table summarizing key functions in the <cmath> library:

Functions

Function Description Example Result

sqrt(x) Computes the square root of x. sqrt(16) 4.0

pow(x,

y) Computes x raised to the power y (x^y). pow(2, 3) 8.0

abs(x) Returns the absolute value of an integer x. abs(-5) 5

fabs(x) Returns the absolute value of a floating-point number x. fabs(-5.6) 5.6

round(x) Rounds x to the nearest integer. round(4.5) 5

ceil(x) Rounds x up to the smallest integer greater than or equal to x. ceil(4.2) 5

floor(x)
Rounds x down to the largest integer less than or equal to

x.
floor(4.8) 4

log(x) Computes the natural logarithm (base e) of x. log(10) 2.3026

log10(x) Computes the base-10 logarithm of x. log10(100) 2

sin(x) Computes the sine of x (in radians).
sin(3.14 /

2)
1.0

cos(x) Computes the cosine of x (in radians). cos(3.14) -1.0

tan(x) Computes the tangent of x (in radians).
tan(3.14 /

4)
1.0

exp(x)

Computes the exponential value of x (e
^x

, where e ≈ 2.71828). exp(1) 2.71828

P a g e | 3

Department of Cyber Security

Programming Fundamentals – Lecture (9)

1st Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Example:

#include <iostream>

#include <cmath>

using namespace std;

int main() {

 // Testing basic cmath functions

 cout << "ceil(5.8) = " << ceil(5.8) << endl;

 cout << "floor(5.8) = " << floor(5.8) << endl;

 cout << "abs(-4.7) = " << abs(-4.7) << endl;

 cout << "pow(3, 3) = " << pow(3, 3) << endl;

 cout << "sqrt(16) = " << sqrt(16) << endl;

 cout << "log(2.71828) = " << log(2.71828) << endl; // Approximation of e

 cout << "log10(1000) = " << log10(1000) << endl;

 // Trigonometric functions (angles in radians)

 cout << "sin(0.7854) = " << sin(0.7854) << endl; // Approx. π/4 radians

 cout << "cos(0.7854) = " << cos(0.7854) << endl;

 cout << "tan(0.7854) = " << tan(0.7854) << endl;

 return 0;

}

Output:

ceil(5.8) = 6

floor(5.8) = 5

abs(-4.7) = 4.7

pow(3, 3) = 27

sqrt(16) = 4

log(2.71828) = 1

log10(1000) = 3

sin(0.7854) = 0.707107

cos(0.7854) = 0.707107

tan(0.7854) = 1

sinh(1) = 1.1752

cosh(1) = 1.54308

tanh(1) = 0.761594

2. Translating Equations into C++

To use <cmath>, we often translate mathematical equations into equivalent C++ expressions.

Let's explore examples that combine functions.

P a g e | 4

Department of Cyber Security

Programming Fundamentals – Lecture (9)

1st Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Example 1: Simple Equation

Write the following equation in C++ and determine its order of evaluation:

Solution: C++ Expression:

f = sqrt((sin(x) + pow(x, 3)) / (log(x) - x / 2));

Order of Evaluation:

1. Compute sin(x).

2. Compute pow(x, 3).

3. Add sin(x) + pow(x, 3).

4. Compute log(x).

5. Compute x / 2.

6. Subtract log(x) - x / 2.

7. Divide the numerator by the denominator.

8. Take the square root using sqrt.

Example 2: Trigonometric Equation

Write the following equation in C++:

Solution: C++ Expression:

g = sqrt((tan(x) - exp(x)) / (sin(x) + pow(x, 2) / 3));

P a g e | 5

Department of Cyber Security

Programming Fundamentals – Lecture (9)

1st Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

Order of Evaluation:

1. Compute tan(x).

2. Compute exp(x).

3. Subtract tan(x) - exp(x).

4. Compute sin(x).

5. Compute pow(x, 2).

6. Divide pow(x, 2) / 3.

7. Add sin(x) + (pow(x, 2) / 3).

8. Divide the numerator by the denominator.

9. Take the square root using sqrt.

Example 3: Nested Equation

Write the following equation in C++:

Solution: C++ Expression:

h = sqrt((log(x) + sqrt(x)) / (cos(x) * pow(x, 4)));

Order of Evaluation:

1. Compute log(x).

2. Compute sqrt(x).

3. Add log(x) + sqrt(x).

4. Compute cos(x).

5. Compute pow(x, 4).

6. Multiply cos(x) * pow(x, 4).

7. Divide the numerator by the denominator.

8. Take the square root using sqrt.

P a g e | 6

Department of Cyber Security

Programming Fundamentals – Lecture (9)

1st Stage

Lecturer Name

Dr. Abdulkadhem A. Abdulkadhem

3. Understanding Order of Operations

C++ follows precedence rules for operators, but <cmath> functions have their own evaluation

order based on the equation.

1. Parentheses () override normal precedence.

2. Function calls (e.g., sqrt, pow) are evaluated from innermost to outermost.

3. Multiplication, Division, Addition, and Subtraction follow the standard operator

precedence.

For complex expressions, breaking them into smaller steps improves readability and ensures

correctness.

4. Practice Problems

Problem 1: Write the following equation in C++ and determine the order of evaluation:

Problem 2: Write a C++ program that calculates the value of:

Conclusion

The <cmath> library simplifies mathematical computations in C++. By understanding how to

translate equations and evaluate operations step-by-step, you can efficiently handle complex

calculations in your programs.

