

University of Al-Mustaqbal College of Science Department of Medical Physics

Laser in medicine Practical Experiences

Third Stage

Calculate the Thickness of a Glass Can

Lec 2

Asst. lec. Ali Salman Hamadi Mohammed abdulzahra Haneen hani

1 | P a g e Study Year: 2024 - 2025

Experiment: Calculate the Thickness of a Glass Can

Objective:

To determine the thickness of a glass can using simple tools and a systematic procedure.

Tools and Materials:

- 1. Glass can (transparent preferred).
- 2. Vernier caliper (or ruler, if unavailable).
- 3. Digital or mechanical balance (to measure mass).
- 4. Measuring cylinder (optional, for volume measurement).
- 5. Water (optional, for volume determination if needed).
- 6. Calculator (for calculations).

Work Steps

Step 1: Measure the Dimensions of the Glass Can

1. Outer Diameter:

Use the vernier caliper to measure the outer diameter of the can. Record the measurement as D_{outer} .

2. Inner Diameter:

• Measure the inner diameter of the can using the caliper. Record it as \mathbf{D}_{inner} .

3. Height:

Measure the height of the glass can using the caliper or ruler.
Record it as h.

Step 2: Calculate the Volume of Glass Material

1. Calculate the Outer Volume:

o Use the formula for the volume of a cylinder:

$$V_{outer} = \pi \left(\begin{array}{c} D_{outer} \\ 2 \end{array} \right)^2 h$$

2. Calculate the Inner Volume:

o Similarly, calculate the volume of the hollow part of the can:

$$V_{inner} = \pi \left(D_{\underline{inner}} \right)_2 h$$

3. Volume of Glass:

Subtract the inner volume from the outer volume to find the volume of the glass material: $V_{glass} = V_{outer} - V_{inner}$

Step 3: Measure the Mass of the Glass Can

1. Use the balance to measure the mass of the glass can. Record the value as ${\bf m}$.

Step 4: Determine the Thickness

1. Calculate the surface area of the cylinder using:

Surface Area =
$$2\pi$$
 D_{outer} h 2.

Verify the thickness using:

$$\begin{tabular}{ll} Thickness = & V_{glass} \\ \hline Surface Area of Outer Cylinder \\ \hline \end{tabular}$$

Conclusion:

- 1. Report the measured thickness of the glass.
- 2. Compare your result with known thickness values for similar cans.
- 3. Reflect on the accuracy of measurements and assumptions (e.g., uniformity of glass thickness).

Discussion

1: What is the primary objective of the glass can experiences?

- A) To measure the height of a glass can.
- B) To determine the thickness of the glass can.
- C) To calculate the volume of water in the can.
- D) To find the density of the can material.
- E) To measure the weight of the can.

2: Which tool is used to measure the outer and inner diameters of the can?

- A) Digital balance
- B) Vernier caliper
- C) Ruler
- D) Measuring cylinder
- E) Compass

3: How is the height of the glass can recorded?

- A) Using the digital balance
- B) Using the calculator
- C) Using the vernier caliper or ruler
- D) Using the measuring cylinder
- E) By approximation

4: Which formula is used to calculate the outer volume of the can?

- A) π Douter / h
- B) Douter / 2h
- C) π (Dinner / 2)²h²
- D) 2π Douter / h^2
- E) π (Douter / 2)²h

5: What is the difference between V_{outer} and V_{inner} ?

- A) Surface area of the glass
- B) Volume of the glass material
- C) Mass of the glass can
- D) Thickness of the glass
- E) Height of the can

6: Which tool is optional for determining the volume of the glass can?

- A) Water
- B) Measuring cylinder
- C) Calculator
- D) Vernier caliper
- E) A and B

7: What is the purpose of the digital or mechanical balance?

- A) To measure the volume of water
- B) To measure the mass of the glass can
- C) To calculate the thickness of the glass
- D) To measure the outer diameter
- E) To determine surface area

8: How is the thickness of the glass calculated?

- A) By dividing V_{outer} by the height.
- B) By subtracting $V_{inne}r$ from V_{outer} .
- C) By dividing the volume of glass by the surface area of the outer cylinder.
- D) By multiplying D_{outer} and D_{inner} .
- E) By using the height and mass of the can.

9: What formula is used to find the surface area of the outer cylinder?

- A) $\pi(D_{outer} / 2)^2$
- B) 2π D_{outer}h 2
- C) $\pi D_{inner} h$
- D) $2\pi D_{inner}^{2}$
- E) V_{glass} / h

10: What are the tools used in the experiment?

- A) Glass can.
- B) Digital or mechanical balance.
- C) Calculator.
- D) All of the above.
- E) None of the above.

11: Which variable is represented by m?

- A) Inner diameter
- B) Mass of the glass can
- C) Volume of the glass material
- D) Thickness of the glass
- E) Height of the can

12: What is the significance of subtracting V_{outer} from V_{inner} ?

- A) To find the volume of the glass material
- B) To calculate the thickness directly
- C) To find the mass of the glass can
- D) To determine the surface area of the can
- E) To measure the height of the can

13: What should you use to perform calculations in this procedure?

- A) Vernier caliper
- B) Digital balance
- C) Calculator
- D) Measuring cylinder
- E) Compass

14: What is the relationship between surface area and thickness in this procedure?

- A) Thickness is proportional to the surface area.
- B) Thickness is inversely proportional to the surface area.
- C) Thickness is measured using a vernier caliper.
- D) Thickness is directly calculated from the height.
- E) None of the above.

15. Which factor does NOT used in the experiment of the thickness of the glass can?

- A) Height of the can.
- B) Outer diameter of the can.
- C) Inner diameter of the can.
- D) Mass of the can.
- E) Color of the can.