

Al-Mustaqbal University / College of Engineering & Technology Department (Building and Construction Techniques Engineering) Class (1st)

Subject (Mechanics) / Code (UOMU023011)

Lecturer (Dr. Mayadah W. Falah)

1st/2nd term – Lecture No. & Lecture Name (Lec.No.6 & Resultant of Force Systems)

Chapter Two: Resultant of Force Systems

Resultant: simplest force system which have same external effect of the original system.

2.1 Resultant of Coplanar Concurrent Force System

In x-y plane, the resultant of coplanar concurrent force system where the lines of action of all forces pass through a common point can be found by the following formulas:

$$R_{x} = \sum F_{x} \rightarrow^{+}$$

$$R_x = F_{1x} - F_{2x} - F_{3x} + F_{4x}$$

$$R_y = \sum F_y \quad \uparrow^+$$

$$R_y = F_{1y} + F_{2y} - F_{3y} - F_{4y}$$

$$R = \sqrt{{R_x}^2 + {R_y}^2}$$

$$\theta_{x} = \tan^{-1}\left(\frac{R_{y}}{R_{x}}\right)$$

Subject (Mechanics) / Code (UOMU023011)

Lecturer (Dr. Mayadah W. Falah)

1st/2nd term – Lecture No. & Lecture Name (Lec.No.6 & Resultant of Force Systems)

Example No. 1: Determine the magnitude and direction of the resultant forces system shown in Figure.

Solution:

$$F_{1x} = 250 \times \sin 45 = 176.8 \, N \rightarrow$$

$$F_{1y} = 250 \times \cos 45 = 176.8 \, N \uparrow$$

$$F_{2x} = 200 \times \frac{4}{5} = 160 N \leftarrow$$

$$F_{2y} = 200 \times \frac{3}{5} = 120 \, N \quad \uparrow$$

$$F_{3x} = 400 N \leftarrow$$

$$F_{3y} = 0$$

Al-Mustaqbal University / College of Engineering & Technology Department (Building and Construction Techniques Engineering) Class (1st)

Subject (Mechanics) / Code (UOMU023011)

Lecturer (Dr. Mayadah W. Falah)

1st/2nd term - Lecture No. & Lecture Name (Lec.No.6 & Resultant of Force Systems)

$$\rightarrow^+ R_x = \sum F_x = 176.8 - 160 - 400$$

$$R_x = -383.2 N = 383.2 N \leftarrow$$

$$\uparrow^+ R_y = \sum F_y = 176.8 + 120 + 0 = 296.8 \, N \, \uparrow$$

$$R = \sqrt{R_x^2 + R_y^2} = \sqrt{(383.2)^2 + (296.8)^2} = 484.7 N$$

$$\theta_x = \tan^{-1}\left(\frac{R_y}{R_x}\right) = \tan^{-1}\left(\frac{296.8}{383.2}\right) = 37.8^\circ$$

Example No. 2: Find the resultant force on the ring due to the three applied forces.

Subject (Mechanics) / Code (UOMU023011)

Lecturer (Dr. Mayadah W. Falah)

1st/2nd term – Lecture No. & Lecture Name (Lec.No.6 & Resultant of Force Systems)

Solution:

$$\to^+ R_{\chi} = \sum F_{\chi}$$

$$R_x = 30\cos 37 - 50\cos 45 - 80\cos 60$$

$$R_x = -51.40 N = 51.40 N \leftarrow$$

$$\uparrow^+ R_y = \sum F_y$$

$$R_y = 30 \sin 37 + 50 \sin 45 - 80 \sin 60$$

$$R_{y} = -15.87 N = 15.87 N \downarrow$$

$$R = \sqrt{{R_x}^2 + {R_y}^2} = \sqrt{(51.40)^2 + (15.87)^2}$$

$$R = 53.79 N$$

$$\theta_{x} = \tan^{-1}\left(\frac{R_{y}}{R_{x}}\right)$$

$$\theta_x = \tan^{-1}\left(\frac{15.87}{51.40}\right) = 17.16^\circ$$

Subject (Mechanics) / Code (UOMU023011)

Lecturer (Dr. Mayadah W. Falah)

1st/2nd term – Lecture No. & Lecture Name (Lec.No.6 & Resultant of Force Systems)

Example No. 3: The resultant of the three forces is horizontal. Determine the magnitude of the resultant.

Solution:

Since the resultant is horizontal, therefore:

$$R_y = 0$$
, $R = R_x$

$$c = \sqrt{24^2 + 7^2} = 25$$

$$\uparrow^+ R_y = \sum F_y$$

$$0 = T \times \frac{7}{25} + 5200 \times \frac{12}{13} - 5150$$

$$\therefore T = 1250 \, N$$

$$\to^+ R_x = R = \sum F_x$$

Al-Mustaqbal University / College of Engineering & Technology **Department (Building and Construction Techniques Engineering)** Class (1st)

Subject (Mechanics) / Code (UOMU023011)

Lecturer (Dr. Mayadah W. Falah)

1st/2nd term – Lecture No. & Lecture Name (Lec.No.6 & Resultant of Force Systems)

$$R = -T \times \frac{24}{25} + 5200 \times \frac{5}{13}$$

$$R = 800 N \rightarrow$$

Problems:

1. Determine the magnitude and direction of the resultant forces system shown in Figure.

Answer: $R = 71.8 \, N$, $\theta_x = 40.15^{\circ}$

$$\theta_x = 40.15^{\circ}$$

2. If the resultant of fourth forces is 200 N as shown in figure. Find the unknown for the force.

$$F_4 = 165 \, N_1$$

Answer:
$$F_4 = 165 \, N$$
, $\theta_x = 11.153^{\circ}$

Al-Mustaqbal University / College of Engineering & Technology Department (Building and Construction Techniques Engineering) Class (1st)

Subject (Mechanics) / Code (UOMU023011)

Lecturer (Dr. Mayadah W. Falah)

1st/2nd term – Lecture No. & Lecture Name (Lec.No.6 & Resultant of Force Systems)

3. The resultant of the three forces as shown in figure is vertical. determine the angle θ , and magnitude of the resultant.

Answer: $R = 30 N \downarrow$, $\theta = 36.87^{\circ}$

4. If the resultant force acting on the bracket is to be 750 N directed along the positive x - axis, determine the magnitude of **F** and its direction θ .

Answer: $F = 236.1 \, N$, $\theta = 31.76^{\circ}$

Lecturer (Dr. Mayadah W. Falah)

1st/2nd term – Lecture No. & Lecture Name (Lec.No.6 & Resultant of Force Systems)