[image: ]
Al-Mustaqbal University
College of Sciences
Department of Cybersecurity
المرحلة الاولى- اساسيات البرمجة


كليـــة العلـــــوم
قسم الأمن السيبراني






	
Subject: Programming Fundamentals
First Stage
Lecturer: Dr. Abdulkadhem A. Abdulkadhem 


Lecture (6)
Switch Case Selection




1. Introduction to the switch Statement
Definition: The switch statement in C++ is a control structure used to execute one block of code out of many options, based on the value of an expression.
Key Characteristics:
· Suitable for situations with multiple discrete choices.
· Provides a cleaner alternative to multiple if-else statements.
2. Structure of the switch Statement
[image: ]
Syntax:
	switch (expression) {
    case value1:
        // Code to execute if expression == value1
        break;
    case value2:
        // Code to execute if expression == value2
        break;
    ...
    default:
        // Code to execute if no case matches
        break;
}


Components:
1. Expression: A value or variable evaluated to determine which case to execute.
2. Case Labels: Define values to compare against the expression.
3. Break Statement: Exits the switch block to prevent fall-through.
4. Default Case: An optional catch-all block executed if no case matches.
3. Rules and Guidelines for Using switch
· The expression must evaluate to an integer, character, or enumerated type.
· Case labels must be constants or literals (e.g., case 1: or case 'A':).
· The break statement is essential to prevent fall-through.
· Avoid using floating-point or string types as expressions in switch.
4. Advantages and Limitations
Advantages:
· Improves readability compared to nested if-else.
· Executes faster for large, discrete sets of choices.
Limitations:
· Limited to discrete values (no ranges or complex conditions).
· Does not support expressions with logical or relational operators.
5. Examples with Code and Explanation of switch
Example 1: Write a program to print the day of the week based on a number input.
	#include <iostream>
using namespace std;
int main() {
    int day;
    cout << "Enter a number (1-7): ";
    cin >> day;

    switch (day) {
        case 1:
            cout << "Monday";
            break;
        case 2:
            cout << "Tuesday";
            break;
        case 3:
            cout << "Wednesday";
            break;
        case 4:
            cout << "Thursday";
            break;
        case 5:
            cout << "Friday";
            break;
        case 6:
            cout << "Saturday";
            break;
        case 7:
            cout << "Sunday";
            break;
        default:
            cout << "Invalid input! Please enter a number between 1 and 7.";
            break;
    }
    return 0;
}



Explanation:
· The switch block evaluates the variable day.
· Each case corresponds to a day of the week.
· The default block handles invalid inputs.
Example 2:  Write a program to classify grades into categories based on score ranges.
	#include <iostream>
using namespace std;
int main() {
    int grade;
    cout << "Enter your grade (0-100): ";
    cin >> grade;

    switch (grade / 10) {  // Divide by 10 to categorize into ranges
        case 10: 
            cout << "Excellent +";
            break;         
        case 9:
            cout << "Excellent";
            break;
        case 8:
            cout << "Very Good";
            break;
        case 7:
            cout << "Good";
            break;
        case 6:
            cout << "Satisfactory";
            break;
        default:
            if (grade >= 0 && grade < 60)
                cout << "Fail";
            else
              cout << "Invalid grade! Please enter a value between 0 and 100.";
            break;
    }
    return 0;
}


Explanation
1. Grade Categorization: The input grade is divided by 10, grouping it into ranges like 90-100, 80-89, etc.
2. Case Labels: 
· 10 and 9: "Excellent" for scores between 90 and 100.
· 8: "Very Good" for scores between 80 and 89.
· 7: "Good" for scores between 70 and 79.
· 6: "Satisfactory" for scores between 60 and 69.
· default: Handles scores below 60 as "Fail" or invalid values outside the 0-100 range.
Example 3: Write a C++ program that reads two integer numbers, an operation, and performs the selected operation using a switch statement
	#include <iostream>
using namespace std;
int main() {
    int a, b;
    char x;

    // Prompt user for input
    cout << "Enter two numbers:\n";
    cin >> a >> b;

    // Display menu options
    cout << "+ for addition\n";
    cout << "- for subtraction\n";
    cout << "* for multiplication\n";
    cout << "/ for division\n";
    cout << "Enter your choice:\n";
    cin >> x;

    // Perform operation based on user's choice
    switch (x) {
        case '+':
            cout << "Result: " << a + b << endl;
            break;
        case '-':
            cout << "Result: " << a - b << endl;
            break;
        case '*':
            cout << "Result: " << a * b << endl;
            break;
        case '/':
            if (b != 0)
                cout << "Result: " << a / b << endl;
            else
             cout << "Error: Division by zero is not allowed!" << endl;
            break;
        default:
            cout << "Invalid operation! Please select +, -, *, or /." << endl;
            break;
    }

    return 0;
}


Explanation of the Code
1. Input:
· The program prompts the user to enter two integers (a and b).
· It also prompts the user to choose an operation (+, -, *, /).
2. Menu Options:
· Displays all valid operations for clarity.
3. switch Statement:
· Checks the operation entered by the user (x) and performs the corresponding arithmetic.
· The case labels handle specific operations:
· + for addition.
· - for subtraction.
· * for multiplication.
· / for division.
· The default block handles invalid input for the operation.
4. Division by Zero Check:
· Ensures safe execution of division to avoid errors when dividing by zero.
5. Output:
· Displays the result of the operation or an error message if the input is invalid.
6. Conditional (Ternary) Operator(?)
 The conditional (ternary) operator is a compact alternative to simple if-else statements. It evaluates a condition and returns one of two values based on the result.
Syntax:
	condition ? expression1 : expression2;


Example 4: Write a C++ program to find the larger of two integers using Ternary Operator.
	#include <iostream>
using namespace std;

int main() {
    int a, b;
    cout << "Enter two numbers: ";
    cin >> a >> b;

    int max = (a > b) ? a : b;
    cout << "The larger number is: " << max;

    return 0;
}


Explanation:
· The expression (a > b) ? a : b evaluates whether a is greater than b.
· If true, it assigns a to max; otherwise, it assigns b.
Use Cases:
· Simple condition-based assignments.
· Avoid overusing it for complex logic to maintain code readability.
 Advantages and Limitations
Advantages:
· Improves readability compared to nested if-else.
· Executes faster for large, discrete sets of choices.
Limitations:
· Limited to discrete values (no ranges or complex conditions).
· Does not support expressions with logical or relational operators.

Practice Questions
1. [bookmark: _GoBack]Write a switch statement to output the corresponding month name for a given number (1-12).
2. Write a c++ program for using a ternary expression to check if a given integer n is even or odd. The expression should return "Even" if n is even and "Odd" if n is odd.
2024-2025
image1.png
General Form of Switch Selection statement:

switch ( sefector )

{
case /abell . statementl; break;
case fabel2 . statement?; break;
case Jabel3 : statement3; break;

case /abel-n . statement-n ; break;
default : statement-e; break;





image2.png




