Ministry of Higher Education and Scientific Research

Al-Mustaqbal University

College of Engineering & Technology

Medical Instrumentation Techniques Engineering Department

Electrical Technology

Third Class

Weeks 14

D.C machines: Generator E.M.F, losses and Efficiency

Tutorial

By Osamah Jaber Ghayyib

	b.	Reduce sparking at brushes.
	c.	Provide smoother output.
	d.	Convert the induced A.C. into D.C.
2.	In a D.C.	generator, the generated e.m.f. is directly proportional to the
	a.	Field current.
	b.	Pole flux.
	c.	Number of armature parallel paths.
	d.	Number of dummy coils.
3.	What is t	he average coil emf generated in a 4-pole DC machine having flux/pole equal
	to 0.1 wb	rotating at 1500 rpm? (No. of coil sides = 100)
	a.	19 kV.
	b.	1.9 kV.
	c.	190 V.
	d.	19 V.
4.	A 4-pole	D.C wound machine is lap wound with 400 conductors. The pole shore is 20
	cm long a	and average flux density over one-pole pitch is 0.4 T, the armature diameter
	being 30	cm. What is the value of induced emf?
	a.	188 V.
	b.	276 V.
	c.	94 V.

2

1. The sole purpose of a commutator in a D.C. Generator is to

a. Increase output voltage.

	d. 188 mV.
5. If the average coil emf of a DC motor is doubled and flux is halved (keeping o	
	parameters constant) then its shaft speed will become
	a. Twice of the original speed.
	b. Square of the original speed.
	c. Four times of the original speed.
	d. Half of the original speed.
6.	For a constant emf, if field current is reduced then the speed of the DC motor
	will
	a. Remains same.
	b. Increases.
	c. Decreases.
	d. Can't say.
7.	Copper losses in a rotating machine is
	a. Variable losses.
	b. Constant losses.
	c. Either (a) or (b).
	d. None of these.
8.	Hysteresis loss in a dc shunt generator
	a. Depends only on the lamination thickness.
	b. Varies as 1.6 power flux density.
	c. Varies as the inverse of flux density

- 9. Iron losses in a dc machine take place in
 - a. armature rotor.
 - b. main body.
 - c. Commutator.
 - d. yoke.
- 10. If % η_m is the mechanical efficiency of a D.C. machine and % η_e is the electrical efficiency. Then the overall efficiency of D.C. machine is given by
 - a. $\% \eta_m + \% \eta_e$.
 - b. $\% \eta_m x \% \eta_e$.
 - c. $(\% \eta_m + \% \eta_e) / \% \eta_m$.
 - d. $(\% \eta_m + \% \eta_e) / \% \eta_e$.
- 11. The current flowing through the armature of a d.c. shunt machine at maximum efficiency is given by
 - a. $\sqrt{W_{co}/Ra}$.
 - b. $\sqrt{(\text{Ra}/W_{co})}$.
 - c. $\sqrt{(W_{co}/R^2a)}$.
 - d. $\sqrt{(\text{Ra}/(W_{co})^2)}$.
- 12. A D.C. shunt generator delivers 190 A at a terminal voltage of 220 V. The copper losses and stray losses are 2000 W and 1000 W respectively. The efficiency of the generator is_____
 - a. 91.35 %.
 - b. 92.60 %.

- c. 93.30 %.
- d. 94.23 %.

Problems

- 1- A long-shunt dynamo running at 1000 r.p.m. supplies 22 kW at a terminal voltage of 220 V. The resistances of armature, shunt field and the series field are 0.05, 110 and 0.06 Ω respectively. The overall efficiency at the above load is 88%. Find
 - a. Cu losses.
 - b. Iron and friction losses.
 - c. The torque exerted by the prime mover.

Ans: - (Cu = 1584.5 W, Iron & friction = 1,415.5 W,
$$T = 238.74 N - m$$
)

2- A 4-pole D.C. generator is delivering 20 A to a load of 10 Ω . If the armature resistance is 0.5 Ω and the shunt field resistance is 50 Ω , calculate the induced e.m.f. and the efficiency of the machine. Allow a drop of 1 V per brush.

Ans:
$$-(E_g = 214 \text{ V}, \eta e = 77.9 \%)$$

3- A long-shunt compound-wound generator gives 240 volts at F.L. output of 100 A. The resistances of various windings of the machine are : armature (including brush contact) 0.1 Ω , series field 0.02 Ω , interpole field 0.025 Ω , shunt field (including regulating resistance) 100 Ω . The iron loss at F.L. is 1000 W; windage and friction losses total 500 W. Calculate F.L. efficiency of the machine.

Ans:
$$-$$
 (Total losses = 87%)