

Republic of Iraq Ministry of Higher Education & Scientific research Al-Mustaqbal University Science College

Department of Forensic Evidence

Introduction in Chemistry

For

First Year Student

Lecture 5

By

Dr. Assel Amer Hadi

2024-2025

Electron Configurations

The energy of an electron depends on the type of orbital that it occupies. Orbitals with the same energy level are called degenerate orbitals. * The order in which the orbitals are filled by electrons is determined by just three simple principles:

- 1- The Aufbau (or Building up) principle. The lowest-energy orbital is filled first.
- 2- The Pauli Exclusion Principle. Each orbital can accommodate a maximum of two electrons that have opposite spin states.
- 3- Hund's Rule. When dealing with degenerate orbitals, such as p orbitals, one electron is placed in each degenerate orbital first, before electrons are paired up.
 - ❖ The figure below shows the electron configuration of B, C, N, O, F and Ne.

Aufbau Principle

$$I = 0$$

$$I = 1$$

$$I = 2$$

$$I = 3$$

$$n = 1$$

$$n = 2$$

$$n = 3$$

3p

$$n = 4$$

4s

4p

4f

$$n = 5$$

5s

5p

5d

5f

$$n = 6$$

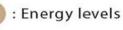
65

бр

6d

7d

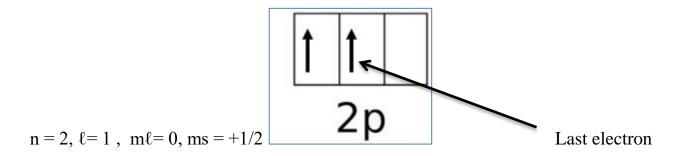
6f


n = 7

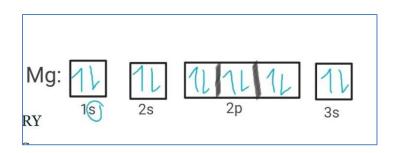
n: Principal quantum number

l: Azimuthal quantum number

ChemistryLearner.com


Atomic number	Symbol	Electron configuration	Atomic number	Symbol	Electron configuration	Atomic number	Symbol	Electron configuration
1	Н	1s ¹	37	Rb	[Kr]5s1	73	Та	[Xe] $6s^24f^{14}5d^3$
2	He	1s ²	38	Sr	[Kr]5s ²	74	W	[Xe] $6s^24f^{14}5d^4$
3	Li	[He]2s1	39	Υ	[Kr]5s ² 4d ¹	75	Re	[Xe] $6s^24f^{14}5d^5$
4	Be	[He]2s ²	40	Zr	$[Kr]5s^24d^2$	76	Os	$[Xe]6s^24f^{14}5d^6$
5	В	[He] $2s^22p^1$	41	Nb	$[Kr]5s^{1}4d^{4}$	77	lr	$[Xe]6s^24f^{14}5d^7$
6	C	[He] $2s^22p^2$	42	Мо	$[Kr]5s^14d^5$	78	Pt	[Xe] $6s^14f^{14}5d^9$
7	N	[He] $2s^22p^3$	43	Tc	$[Kr]5s^24d^5$	79	Au	[Xe] $6s^14f^{14}5d^{10}$
8	0	[He] $2s^22p^4$	44	Ru	$[Kr]5s^{1}4d^{7}$	80	Hg	[Xe] $6s^24f^{14}5d^{10}$
9	F	[He] $2s^22p^5$	45	Rh	$[Kr]5s^14d^8$	81	TI	[Xe]6 s^2 4 f^{14} 5 d^{10} 6 p^1
10	Ne	[He] $2s^22p^6$	46	Pd	[Kr]4d ¹⁰	82	Pb	[Xe]6 $s^24f^{14}5d^{10}6p^2$
11	Na	[Ne]3s1	47	Ag	[Kr]5s ¹ 4d ¹⁰	83	Bi	[Xe]6 s^2 4 f^{14} 5 d^{10} 6 p^3
12	Mg	$[Ne]3s^2$	48	Cd	$[Kr]5s^24d^{10}$	84	Po	[Xe] $6s^24f^{14}5d^{10}6p^4$
13	Al	$[Ne]3s^23p^1$	49	In	$[Kr]5s^14d^{10}5p^1$	85	At	[Xe]6 s^2 4 f^{14} 5 d^{10} 6 p^5
14	Si	$[Ne]3s^23p^2$	50	Sn	$[Kr]5s^14d^{10}5p^2$	86	Rn	[Xe] $6s^24f^{14}5d^{10}6p^6$
15	Р	$[Ne]3s^23p^3$	51	Sb	$[Kr]5s^14d^{10}5p^3$	87	Fr	[Rn]7s1
16	S	$[Ne]3s^23p^4$	52	Te	$[Kr]5s^14d^{10}5p^4$	88	Ra	[Rn]7s ²
17	Cl	[Ne] $3s^23p^5$	53	1	$[Kr]5s^14d^{10}5p^5$	89	Ac	$[Rn]7s^26d^1$
18	Ar	[Ne] $3s^23p^6$	54	Xe	$[Kr]5s^14d^{10}5p^6$	90	Th	$[Rn]7s^26d^2$
19	K	[Ar]4s ¹	55	Cs	[Xe]6s1	91	Pa	[Rn]7s ² 5f ² 6d ¹
20	Ca	$[Ar]4s^2$	56	Ва	$[Xe]6s^2$	92	U	[Rn]7s ² 5f ³ 6d ¹
21	Sc	$[Ar]4s^23d^1$	57	La	$[Xe]6s^25d^1$	93	Np	[Rn]7s ² 5f ⁴ 6d ¹
22	Ti	$[Ar]4s^23d^2$	58	Ce	$[Xe]6s^24f^15d^1$	94	Pu	[Rn]7s ² 5f ⁶
23	V	$[Ar]4s^23d^3$	59	Pr	$[Xe]6s^24f^3$	95	Am	[Rn]7s ² 5f ⁷
24	Cr	$[Ar]4s^{1}3d^{5}$	60	Nd	$[Xe]6s^24f^4$	96	Cm	$[Rn]7s^25f'6d^1$
25	Mn	$[Ar]4s^23d^5$	61	Pm	$[Xe]6s^24f^5$	97	Bk	[Rn]7s ² 5f ⁹
26	Fe	$[Ar]4s^23d^6$	62	Sm	$[Xe]6s^24f^6$	98	Cf	[Rn]7s ² 5f ¹⁰
27	Co	$[Ar]4s^23d^7$	63	Eu	$[Xe]6s^24f^7$	99	Es	[Rn]7s ² 5f ¹¹
28	Ni	$[Ar]4s^23d^8$	64	Gd	$[Xe]6s^24f^75d^1$	100	Fm	$[Rn]7s^25f^{12}$
29	Cu	$[Ar]4s^{1}3d^{10}$	65	Tb	$[Xe]6s^24f^9$	101	Md	$[Rn]7s^25f^{13}$
30	Zn	$[Ar]4s^23d^{10}$	66	Dy	$[Xe]6s^24f^{10}$	102	No	[Rn]7s ² 5f ¹⁴
31	Ga	$[Ar]4s^23d^{10}4p^1$	67	Но	$[Xe]6s^24f^{11}$	103	Lr	[Rn]7s ² 5f ¹⁴ 6d ¹
32	Ge	$[Ar]4s^23d^{10}4p^2$	68	Er	$[Xe]6s^24f^{12}$	104	Rf	$[Rn]7s^25f^{14}6d^2$
33	As	$[Ar]4s^23d^{10}4p^3$	69	Tm	$[Xe]6s^24f^{13}$	105	Db	$[Rn]7s^25f^{14}6d^3$
34	Se	$[Ar]4s^23d^{10}4p^4$	70	Yb	$[Xe]6s^24f^{14}$	106	Sg	$[Rn]7s^25f^{14}6d^4$
35	Br	$[Ar]4s^23d^{10}4p^5$	71	Lu	$[Xe]6s^24f^{14}5d^1$	107	Bh	$[Rn]7s^25f^{14}6d^5$
36	Kr	$[Ar]4s^23d^{10}4p^6$	72	Hf	[Xe] $6s^24f^{14}5d^2$	108	Hs	$[Rn]7s^25f^{14}6d^6$
						109	Mt	$[Rn]7s^25f^{14}6d^7$
						110	Ds	$[Rn]7s^15f^{14}6d^9$
						111	Rg	$[Rn]7s^{1}5f^{14}6d^{10}$

Ex: determine the four set of quantum number for the last electron in the following atoms 6C, 12Mg, 23V


Solution:

1- Write the electron configuration

2- last electron in orbital p

$$12Mg = [10Ne] 3s^2 3p0$$

$$n = 3$$
, $\ell = 0$, $m\ell = 0$, $ms = -1/2$

Note:

The 4s orbital is slightly lower in energy than the 3d and fills first. In any period, the ns sublevel fills before the (n - 1)d sublevel. Other variations in the filling

pattern occur at higher values of n because sublevel energies become very close together.

Categories of Electrons

There are three categories of electrons:

- 1. Inner (core): electrons are those an atom has in common with the previous noble gas and any completed transition series. They fill all the lower energy levels of an atom.
- 2. Outer electrons: are those in the highest energy level (highest n value). They spend most of their time farthest from the nucleus.
- 3. Valence electrons: are those involved in forming compounds: For main-group elements, the valence electrons are the outer electrons.

For transition elements, in addition to the outer ns electrons, the (n - 1)d electrons are also valence electrons, though the metals Fe (Z = 26) through Zn (Z = 30) may use only a few, if any, of their d electrons in bonding.

The relation between main energy level and sublevel energy:

1- **Main energy level** Each principal energy level can contain up to $2n^2$ electrons, where n is the number of the level. Thus, the first level can contain 2 electrons, $2(1^2) = 2$; the second 8 electrons, $2(2^2) = 8$; the third up to 18, $2(3^2) = 18$; and so on. Only seven energy levels are needed to contain all the electrons in an atom of any of those elements now known.

No. of electron = $2n^2$

2- Sublevel energy

a- No. of electron = $2(2\ell+1)$.

In s $\ell = 0$ 2(2(0)+1) = 2 electron.

b- No. of electron in p sublevel.

in p $\ell=1\ 2(2(1)+1)=6$ electron.

3- Find the orbital in each sublevel

No. of orbital = $(2\ell+1)$.

In s sublevel $\ell = 0$.

No. of orbital = 2(0) + 1 = 1 orbital.

4- Find the highest energy by n+l

The (relative) energies of the orbitals can be predicted by the sum of $n + \ell$ for each orbital, according to the following rules:

a. Orbitals are filled in order of increasing $(n + \ell)$, which represents the relative energy.

b. If two orbitals have the same value of $(n + \ell)$, they are filled in order of increasing n.

Which one is the highest energy for the following? 1-3d, 4s 2-5s, 4p

Solution:

1-3d 4s
$$n+\ell=3+2=5$$
 4+0=4

So energy of 3d > 4s

2- 5s 4p
$$n+\ell=5+0=5$$
 $n+\ell=4+1=5$ 5s > 4p (choose high value for n)