1st class 2024- 2025

Mathematics 1

Lecture 4

Asst. Lect. Mohammed Jabbar

mohammed.jabbar.obaid@uomus.edu.iq

الرياضيات الاساسية: المرحلة الاولى مادة الرياضيات 1 المحاضرة الرابعة

استاذ المادة: م.م محمد جبار

Cybersecurity Department قسم الأمن السيبراني

Contents

1 The Derivative		Derivative	tive 1			
	1.1	Derivative of a Function	1			
	1.2	Rules of Derivation	1			

1 The Derivative

1.1 Derivative of a Function

The derivative of a function f(x) with respect to x is defined as:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

where h represents a small change in x, and the limit represents the instantaneous rate of change of the function.

The derivative can also be denoted as:

$$f'(x)$$
, $\frac{dy}{dx}$, $\frac{d}{dx}f(x)$, $D[f(x)]$.

Example: For the function $f(x) = x^2$, the derivative is calculated as:

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x+h) = 2x.$$

Thus, the derivative of $f(x) = x^2$ is f'(x) = 2x.

1.2 Rules of Derivation

The following are the basic rules for finding derivatives of functions, along with examples:

1. Constant Rule: The derivative of a constant is zero.

$$\frac{d}{dx}[c] = 0$$
, where c is a constant.

Example:

$$\frac{d}{dx}[5] = 0.$$

2. **Power Rule:** The derivative of x^n , where n is a real number, is given by:

$$\frac{d}{dx}[x^n] = nx^{n-1}.$$

Example:

$$\frac{d}{dx}[x^3] = 3x^2.$$

3. **Sum and Difference Rule:** The derivative of the sum or difference of two functions is the sum or difference of their derivatives.

$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x).$$

Example:

$$\frac{d}{dx}[x^2 + 3x] = 2x + 3.$$

4. **Product Rule:** The derivative of the product of two functions is:

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x).$$

Example: Let $f(x) = x^2$ and $g(x) = \sin(x)$. Then:

$$\frac{d}{dx}[x^2\sin(x)] = 2x\sin(x) + x^2\cos(x).$$

5. **Quotient Rule:** The derivative of the quotient of two functions is:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}, \quad g(x) \neq 0.$$

Example: Let $f(x) = x^2$ and g(x) = x + 1. Then:

$$\frac{d}{dx}\left[\frac{x^2}{x+1}\right] = \frac{2x(x+1) - x^2(1)}{(x+1)^2} = \frac{x(x+2)}{(x+1)^2}.$$

6. Chain Rule: The derivative of a composite function f(g(x)) is:

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x).$$

Example: Let $f(x) = \sin(x^2)$. Then:

$$\frac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot 2x = 2x\cos(x^2).$$

Derivatives of Trigonometric Functions

Function	Derivative
$\sin(ax)$	$a\cos(ax)$
$\cos(ax)$	$-a\sin(ax)$
tan(ax)	$a \sec^2(ax), ax \neq \frac{\pi}{2} + n\pi, \ n \in \mathbb{Z}$
$\cot(ax)$	$-a\csc^2(ax), ax \neq n\pi, \ n \in \mathbb{Z}$
sec(ax)	$a \sec(ax) \tan(ax), ax \neq \frac{\pi}{2} + n\pi, \ n \in \mathbb{Z}$
$\csc(ax)$	$-a\csc(ax)\cot(ax), ax \neq n\pi, \ n \in \mathbb{Z}$

Derivatives of Hyperbolic Functions

Function	Derivative
sinh(ax)	$a \cosh(ax)$
$\cosh(ax)$	$a \sinh(ax)$
tanh(ax)	$a \operatorname{sech}^2(ax)$
$\coth(ax)$	$-a \operatorname{csch}^2(ax), ax \neq 0$
sech(ax)	$-a\operatorname{sech}(ax)\tanh(ax)$
$\operatorname{csch}(ax)$	$-a \operatorname{csch}(ax) \operatorname{coth}(ax)$

Derivatives of Inverse Trigonometric Functions

Function	Derivative
$\sin^{-1}(ax)$	$\frac{a}{\sqrt{1-(ax)^2}}, ax < 1$
$\cos^{-1}(ax)$	$-\frac{a}{\sqrt{1-(ax)^2}}, ax < 1$
$tan^{-1}(ax)$	$\frac{a}{1+(ax)^2}$
$\cot^{-1}(ax)$	$-\frac{a}{1+(ax)^2}$
$\sec^{-1}(ax)$	$\frac{a}{ ax \sqrt{(ax)^2-1}}, ax > 1$
$\csc^{-1}(ax)$	$-\frac{a}{ ax \sqrt{(ax)^2-1}}, ax > 1$

Derivatives of Inverse Hyperbolic Functions

Function	Derivative
$\sinh^{-1}(ax)$	$\frac{a}{\sqrt{1+(ax)^2}}$
$\cosh^{-1}(ax)$	$\frac{a}{\sqrt{(ax)^2 - 1}}, ax > 1$
$\tanh^{-1}(ax)$	$\frac{a}{1-(ax)^2}, ax < 1$
$\coth^{-1}(ax)$	$\frac{a}{1-(ax)^2}, ax > 1$
$sech^{-1}(ax)$	$-\frac{a}{(ax)\sqrt{1-(ax)^2}}, 0 < ax \le 1$
$\operatorname{csch}^{-1}(ax)$	$-\frac{a}{ ax \sqrt{1+(ax)^2}}$

Derivative of Logarithmic Functions

The derivatives of the following logarithmic functions are given below:

$$\frac{d}{dx}\ln(x) = \frac{1}{x}, \quad x > 0$$

$$\frac{d}{dx}\ln(x^n) = \frac{nx^{n-1}}{x^n}, \quad x > 0, \ n \in \mathbb{R}$$

$$\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}, \quad f(x) \neq 0$$

Derivative of Exponential Functions

The derivatives of the following exponential functions are:

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}e^{f(x)} = e^{f(x)} \cdot f'(x), \quad f(x) \text{ is differentiable}$$