

1st class

2024-2025

Mathematics 1

Lecture 3

Asst. Lect. Mohammed Jabbar

mohammed.jabbar.obaid@uomus.edu.iq

الرياضيات الاساسية: المرحلة الاولى **مادة الرياضيات 1** المحاضرة الثالثة

استاذ المادة: م.م محمد جبار

Cybersecurity Department قسم الأمن السيبراني

Contents

1	Functions					
	1.1	Intervals	2			
	1.2	Definition of Function	4			
	1.3	Domain and Range of Functions	5			
	1.4	Properties and Operations of Functions	7			
	1.5	Trigonometric Functions	9			
		1.5.1 Trigonometric Identities	11			
	1.6	Absolute Value	12			

1 Functions

In mathematics, a function is a fundamental concept that describes a relationship between two sets.

These sets include:

1. Natural Numbers (\mathbb{N}): The set of all positive integers starting from 1.

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

2. Whole Numbers (W): The set of all non-negative integers, including zero.

$$\mathbb{W} = \{0, 1, 2, 3, 4, \dots\}$$

3. Integers (\mathbb{Z}): The set of all whole numbers, including their negative counterparts.

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

4. Rational Numbers (Q): The set of all numbers that can be expressed as a fraction $\frac{p}{q}$, where p and q are integers, and $q \neq 0$.

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$$

Examples: $\frac{1}{2}, -\frac{3}{4}, 5, 0.$

Irrational Numbers: The set of all numbers that cannot be expressed as a fraction. These numbers have non-repeating, non-terminating decimal expansions. Examples: √2, π, e.

6. **Real Numbers** (\mathbb{R}): The set of all rational and irrational numbers.

$$\mathbb{R} = \mathbb{Q} \cup \text{Irrational Numbers}$$

Examples: $-2, 0, \frac{3}{4}, \sqrt{3}, \pi$.

7. Complex Numbers (C): The set of all numbers in the form a+bi, where a, b ∈ R and i = √-1 (the imaginary unit). Formally:

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}\$$

Examples: 2 + 3i, -1 - 4i, 5 (since 5 = 5 + 0i).

1.1 Intervals

An **interval** is a set of real numbers that contains all numbers between any two numbers in the set. Intervals can be classified as open, closed, half-open, or infinite, depending on whether their endpoints are included or excluded.

Types of Intervals

 Open Interval ((a, b)): The set of all real numbers between a and b, excluding the endpoints a and b.

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$

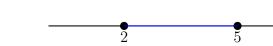
Example: $(2,5) = \{x \mid 2 < x < 5\}.$

2. Closed Interval ([a, b]): The set of all real numbers between a and b, including

the endpoints a and b.

$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

Example: $[2,5] = \{x \mid 2 \le x \le 5\}.$



Half-Open Interval ((a, b] or [a, b)): The set of all real numbers between a and b, including one endpoint and excluding the other.

$$(a, b] = \{ x \in \mathbb{R} \mid a < x \le b \}$$

Example: $(2, 5] = \{x \mid 2 < x \le 5\}.$

$$[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

Example: $[2,5) = \{x \mid 2 \le x < 5\}.$

- 4. Infinite Intervals: Intervals that extend infinitely in one or both directions.
 - (a,∞) : All real numbers greater than a.

$$(a,\infty) = \{x \in \mathbb{R} \mid x > a\}$$

Example:
$$(2, \infty) = \{x \mid x > 2\}.$$

$$2 \xrightarrow{\text{O}}{2}$$

3

• $(-\infty, b)$: All real numbers less than b.

$$(-\infty, b) = \{ x \in \mathbb{R} \mid x < b \}$$

Example:
$$(-\infty, 5) = \{x \mid x < 5\}.$$

• $[a,\infty)$: All real numbers greater than or equal to a.

$$[a,\infty) = \{x \in \mathbb{R} \mid x \ge a\}$$

Example: $[2, \infty) = \{x \mid x \ge 2\}.$

• $(-\infty, b]$: All real numbers less than or equal to b.

$$(-\infty, b] = \{x \in \mathbb{R} \mid x \le b\}$$

Example:
$$(-\infty, 5] = \{x \mid x \le 5\}.$$

1.2 Definition of Function

A function is a rule or correspondence that assigns to each element x in a set A (called the **domain**) exactly one element y in a set B (called the **codomain**).

We write:

$$f: A \to B$$
 where $f(x) = y$.

A is the **domain** of f, B is the **codomain** of f, The set of all outputs y is called the **range** of f.

1.3 Domain and Range of Functions

The **domain** and **range** of a function are fundamental concepts that describe the input and output of a function, respectively.

• **Domain**: The set of all possible input values (x) for which the function is defined.

Domain of $f(x) = \{x \in \mathbb{R} \mid f(x) \text{ is defined}\}.$

• **Range**: The set of all possible output values (y) that the function can produce.

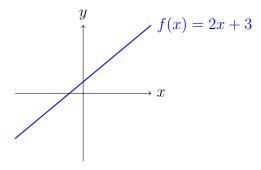
Range of $f(x) = \{y \in \mathbb{R} \mid y = f(x) \text{ for some } x \in \text{Domain}\}.$

Example 1.1 (Linear Function).

$$f(x) = 2x + 3$$

Domain: \mathbb{R} (all real numbers)

Range: \mathbb{R} (all real numbers)

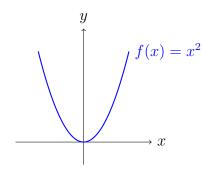


Example 1.2.

$$f(x) = x^2$$

Domain: \mathbb{R} (all real numbers)

Range: $[0,\infty)$

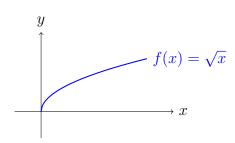


Example 1.3.

 $f(x) = \sqrt{x}$

Domain: $[0,\infty)$

Range: $[0,\infty)$

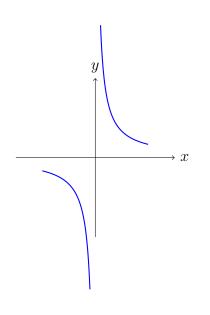


Example 1.4.

$$f(x) = \frac{1}{x}$$

Domain: $\mathbb{R} \setminus \{0\}$ (all real numbers except 0)

Range: $\mathbb{R} \setminus \{0\}$



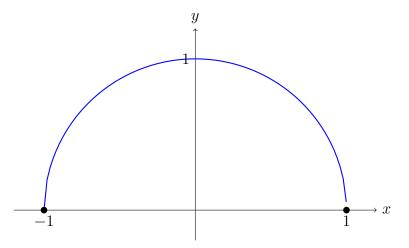
Example 1.5. The function $y = \sqrt{1 - x^2}$ represents the upper semicircle of a unit circle.

• **Domain**: [-1, 1]

Since $1 - x^2 \ge 0$, the values of x are restricted to $-1 \le x \le 1$.

• **Range**: [0, 1]

The square root ensures $y \ge 0$, and the maximum value of y occurs when x = 0, which gives y = 1.



Example 1.6. The function $y = \frac{1}{\sqrt{1-x^2}}$ is defined only where $1 - x^2 > 0$, which restricts the domain and avoids division by zero.

• **Domain**: (-1, 1)

The expression $\sqrt{1-x^2}$ is defined only for -1 < x < 1, excluding -1 and 1, where the denominator becomes zero.

• Range: $[1,\infty)$

The function is strictly increasing on (-1, 0) and strictly decreasing on (0, 1), with the minimum value y = 1 at x = 0, and $y \to \infty$ as $x \to \pm 1$.

Properties and Operations of Functions 1.4

Addition of Functions The sum of two functions f and q is:

$$(f+g)(x) = f(x) + g(x)$$

7

Subtraction of Functions The difference of two functions f and g is:

$$(f-g)(x) = f(x) - g(x)$$

Multiplication of Functions The product of two functions f and g is:

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Division of Functions The division of two functions f and g (where $g(x) \neq 0$) is:

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Composition of Functions The composition of two functions f and g is:

$$(f \circ g)(x) = f(g(x))$$

For example: Let $f(x) = x^2$ and g(x) = 3x, then:

$$(f \circ g)(x) = f(g(x)) = f(3x) = (3x)^2 = 9x^2$$

Inverse of a Function The inverse of a function f, denoted f^{-1} , is defined as:

$$f(x) = y$$
 and $f^{-1}(y) = x$

For example: Let f(x) = 2x + 3, then the inverse function is:

$$f^{-1}(y) = \frac{y-3}{2}$$

For y = 7:

$$f^{-1}(7) = \frac{7-3}{2} = 2$$

Even and Odd Functions A function f(x) is even if:

$$f(-x) = f(x)$$
 for all $x \in \text{Domain}(f)$

A function f(x) is odd if:

$$f(-x) = -f(x)$$
 for all $x \in \text{Domain}(f)$

For examples:

 $f(x) = x^2$ is even because:

$$f(-x) = (-x)^2 = x^2 = f(x)$$

 $f(x) = x^3$ is odd because:

$$f(-x) = (-x)^3 = -x^3 = -f(x)$$

1.5 Trigonometric Functions

1. Sine Function: sin(x)

Domain of sin(x) : $(-\infty, \infty)$

Range of sin(x) : [-1, 1]

2. Cosine Function: cos(x)

Domain of
$$\cos(x)$$
: $(-\infty, \infty)$

Range of
$$\cos(x) : [-1, 1]$$

3. Tangent Function: tan(x)

Domain of
$$\tan(x)$$
: $\left((-\infty, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \infty)\right)$

Range of tan(x): $(-\infty, \infty)$

4. Cotangent Function: $\cot(x)$

Domain of $\cot(x)$: $((-\infty, \pi) \cup (\pi, \infty))$

Range of $\cot(x)$: $(-\infty, \infty)$

5. Secant Function: sec(x)

Domain of
$$\sec(x)$$
 : $(-\infty, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \infty)$

Range of
$$\sec(x)$$
: $(-\infty, -1] \cup [1, \infty)$

6. Cosecant Function: $\csc(x)$

Domain of
$$\csc(x)$$
: $(-\infty, \pi) \cup (\pi, \infty)$

Range of $\csc(x)$: $(-\infty, -1] \cup [1, \infty)$

1.5.1 Trigonometric Identities

- $\sin^2(x) + \cos^2(x) = 1$
- $1 + \tan^2(x) = \sec^2(x)$
- $1 + \cot^2(x) = \csc^2(x)$

Reciprocal Identities:

- $\sec(x) = \frac{1}{\cos(x)}$
- $\csc(x) = \frac{1}{\sin(x)}$
- $\cot(x) = \frac{1}{\tan(x)}$

Quotient Identities:

- $\tan(x) = \frac{\sin(x)}{\cos(x)}$
- $\cot(x) = \frac{\cos(x)}{\sin(x)}$

Double Angle Identities

- $\sin(2x) = 2\sin(x)\cos(x)$
- $\cos(2x) = \cos^2(x) \sin^2(x)$

Sum and Difference Identities

- $\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$
- $\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$

Product-to-Sum and Sum-to-Product Identities

- $\sin(x)\sin(y) = \frac{1}{2}[\cos(x-y) \cos(x+y)]$
- $\cos(x)\cos(y) = \frac{1}{2}[\cos(x-y) + \cos(x+y)]$

Angle (Degrees)	Angle (Radians)	$\sin(\theta)$	$\cos(\theta)$	$\tan(\theta)$
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	undefined
120°	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$
135°	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
150°	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$
180°	π	0	-1	0
210°	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
225°	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	1
240°	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\sqrt{3}$
270°	$\frac{3\pi}{2}$	-1	0	undefined
300°	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\sqrt{3}$
315°	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	-1
330°	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$
360°	2π	0	1	0

•
$$\sin(x)\cos(y) = \frac{1}{2}[\sin(x+y) + \sin(x-y)]$$

1.6 Absolute Value

The absolute value of a number represents its distance from zero on the number line, without considering its sign. Mathematically, the absolute value of a real number x is defined as:

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

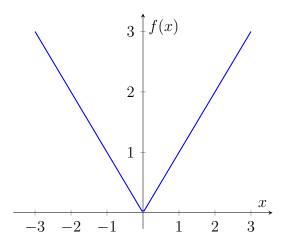
This function transforms all negative numbers into positive ones while leaving positive numbers unchanged.

Domain of $f(x) = |x| : (-\infty, \infty)$

Range: The range of the absolute value function is all non-negative real numbers:

Range of $f(x) = |x| : [0, \infty)$

Graph of the Absolute Value Function



Exercises

Intervals

- 1. For each of the following intervals, state whether it is open, closed, half-open, or half-closed.
 - (a) (-5,3)
 - (b) [1,7]
 - (c) $(-\infty, 4)$
 - (d) (-2, 6]
 - (e) $[0,\infty)$

- (f) $(-1,2) \cup (3,5)$
- 2. For each of the following intervals, sketch its graph on the real number line.
 - (a) (−3, 2)
 - **(b)** [−1, 4)
 - (c) $(-\infty, 0)$
 - (d) $[2,\infty)$

Domain and Range of Composite Functions

For the following functions, find the domain and range:

- 1. $f(x) = \sqrt{x^2 + 4x + 4}$
- 2. $g(x) = \frac{1}{x+3}$
- 3. $h(x) = \sin(x)$

4.
$$p(x) = \ln(x^2 + 1)$$

5. $q(x) = \frac{1}{x-1}$

Composition of Functions

For the following functions, compute the compositions $f \circ g$ and $g \circ f$:

- 1. $f(x) = 2x + 3, g(x) = x^2 1$
- 2. $f(x) = \sqrt{x}, g(x) = 3x + 4$

Even and Odd Functions

For each of the following functions, determine whether the function is even, odd, or neither:

- 1. $f(x) = x^2 + 3$
- 2. $g(x) = x^3 2x$
- 3. $h(x) = \frac{1}{x}$
- 4. $p(x) = \cos(x)$
- 5. $q(x) = \sin(x)$
- 6. $r(x) = x^4 x^2 + 1$
- 7. $s(x) = x^3 + 2x$

Graphing of Functions

Sketch the graph of the following functions:

1. f(x) = 2x + 32. $g(x) = -x^2 + 6x - 8$ 3. h(x) = 2|x + 1|4. p(x) = -|x| + 45.

$$h(x) = \begin{cases} x+2 & \text{if } x < 1\\ 4-x & \text{if } x \ge 1 \end{cases}$$

يمكن معرفة رسم الدوال من خلال الموقع ادناه

www.desmos.com/calculator