

Al-Mustaqbal University

Biomedical Engineering Department

Subject Name: Calculus I1

1st Class, First Semester

Subject Code: [UOMU011013]

Academic Year: 2024-2025

Lecturer: Dr. Amir N.Saud

Email: <u>amir-najah@uomus.edu.iq</u>

Lecture No.:- 1

Lecture Title: Real Number, Intervals, Solving Inequalities, and Absolute

Value

Al-Mustaqbal University Department of Biomedical engineering

First Class Calculus I1 Dr.A.Najah Saud Lecture 1

Chapter one

1- Real Number (R)

a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature.

i . Natural Numbers (N) such that:

$$N = \{1, 2, 3, 4, \dots\}$$

ii. Intager Numbers (I or Z) such that:

I or
$$Z = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

iii. Rational Numbers (Q): it is all numbers of the form

 $\frac{p}{q}$, such that p and q are integers and $q \neq 0$:

$$\mathbb{Q} = \{x \in \mathbb{R} : x = \frac{p}{q}, \text{ where } p, q \in \mathbb{Z} \text{ and } q \neq 0\}$$

Example: $\frac{1}{2}$, $\frac{5}{3}$, 0, $\frac{50}{10}$, ...

Note: The rational Numbers can be written as decimal from

$$(\frac{1}{3} = 0.333, \frac{1}{4} = 0.25, \dots).$$

iv. Irrational Numbers (Q'): A number which is not

rational is said to be irrational.

Example: $\{\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \pi = 3.14, \dots\}$

Note: $\emptyset \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$ and $\mathbb{QUQ}' = \mathbb{R}$

<u>Properties of Real Numbers with Addition:</u> (R, +)

Let a, b, $c \in R$, then:

1.
$$a + b \in \mathbb{R}$$

(Closure)

2.
$$a + b = b + a$$

(Commutative)

3.
$$a + (b + c) = (a + b) + c$$

(Associative)

4.
$$a + 0 = 0 + a = 0$$

(Identity Element)

5.
$$\exists (-a) \in \mathbb{R}$$
 such that $a + (-a) = (-a) + a = 0$

(Additive Inverse)

Properties of Real Numbers with Multiplication: (R,.)

Let a, b, $c \in \mathbb{R}$, then:

1.
$$a.b \in \mathbb{R}$$

(Closure)

2.
$$a.b = b.a$$

(Commutative)

3.
$$a.(b.c) = (a.b).c$$

(Associative)

4.
$$1.a = a.1$$

(Multiplicative Identity)

5.
$$a.(b+c) = a.b + a.c$$

(Distributive)

$$(b+c).a = b.a + c.a$$

6.
$$\exists a^{-1} \in \mathbb{R}$$
 such that $a.a^{-1} = a.\frac{1}{a} = 1$ (Multiplication Inverse)

Intervals:-

- 1. Finite intervals:- Let $a, b \in \mathbb{R}$ such that a < b then:
 - (a) Open Interval = $\{x \in \mathbb{R} : a < x < b\} = (a, b)$

(Note: $a \notin (a, b)$ and $b \notin (a, b)$)

- (b) Closed Interval = $\{x \in \mathbb{R} : a \le x \le b\} = [a, b]$ (Note: $a \in [a, b]$ and $b \in [a, b]$)
- (c) The Half Open Interval = $\{x \in \mathbb{R} : a < x \le b\} = (a, b]$

(Note: $b \in (a, b]$ and $a \notin (a, b]$)

 \underline{OR} :

The Half Open Interval = $\{x \in \mathbb{R} : a \le x < b\} = [a, b)$

(Note: $b \notin [a, b)$ and $a \in [a, b)$)

- 2. Infinite intervals:- Let each of $a, b \in \mathbb{R}$ such that a < b then:
 - (a) $\{x \in \mathbb{R} \text{ such that } a < x < \infty \text{ (or } x > a) \} = (a, \infty)$
 - (b) $\{x \in \mathbb{R} \text{ such that } a \leq x < \infty \text{ (or } x \geq a) \} = [a, \infty)$
 - (c) $\{x \in \mathbb{R} \text{ such that } -\infty < x < a \text{ (or } x < a) \} = (-\infty, a)$
 - (d) $\{x \in \mathbb{R} \text{ such that } -\infty < x \le a \text{ (or } x \le a) \} = (-\infty, a]$
 - (e) $\{x \in \mathbb{R} \text{ such that } -\infty < x < \infty\} = (-\infty, \infty) = \mathbb{R}$

Inequalities:-

Let $a, b \in \mathbb{R}$, b is **greater** than a and denoted by b > a if b - a > 0.

Solving Inequalities:-

Solving the inequalities means obtaining all values of x for which the inequality is true.

Properties of Inequalities:-

Let $a, b, c \in \mathbb{R}$, then:

- 1. if a < b, then a + c < b + c
- 2. if a < b and c > 0, then a.c < b.c
- 3. if a < b and c < 0, then a.c > b.c

Note:- In general, we have linear and non-linear inequalities.

Linear Inequalities Examples:-

Example 1: Solve the following inequality: 3(x+2) < 5?

solution:-

$$3(x+2) < 5 \longrightarrow 3(x+2) < 5 \longrightarrow 3x < 5-6 \longrightarrow < \frac{-1}{3}$$

Hence, the solution set $=\{x \in \mathbb{R} : x < \frac{-1}{3}\} = (-\infty, \frac{-1}{3}).$

Example 2: Solve the following inequality: 7 < 2x + 3 < 11?

solution:-

$$7 < 2x + 3 < 11 \longrightarrow -3 + 7 < 2x < -3 + 11 \longrightarrow 4 < 2x < 8 \longrightarrow 2 < x < 4$$

Hence, the solution set $= \{x \in \mathbb{R} : 2 < x < 4\} = (2, 4).$

Non-Linear Inequalities Examples:-

Example 1: Solve the following inequality: $x^2 < 25$?

solution:-
$$x^2 < 25 \rightarrow x^2 - 25 < 0 \rightarrow (x-5)(x+5) < 0$$

Since the result is negative, then there are two possibilities:

Either:

$$(x+5) > 0$$
 and $(x-5) < 0 \longrightarrow x > -5$ and $x < 5$

So, the solution set is (-5,5)

Or:

$$(x+5)$$
, 0 and $(x-5) > 0 \longrightarrow x < -5$ and $x > 5$

So, the solution set is \emptyset

Therefore, the solution set for the inequality is

$$(-5,5)\cup\emptyset=(-5,5)$$

Example 2: Solve the following inequality: $x^2 - 5x > 6$?

solution:-

$$x^{2} - 5x > 6 \rightarrow x^{2} - 5x - 6 > 0 \rightarrow (x - 6)(x + 1) > 0$$

Since the result is Positive, then there are two possibilities:

Either:

$$(x-6) > 0$$
 and $(x+1) > 0 \longrightarrow x > 6$ and $x > -1$

So, the solution set: $S_1 = \{x \in \mathbb{R} : x > 6\} = (6, \infty)$

<u>Or</u>:

$$(x-6) < 0$$
 and $(x+1), 0 \longrightarrow x < 6$ and $x < -1$

So, the solution set:
$$S_2 = \{x \in \mathbb{R} : x < -1\} = (-\infty, -1)$$

Therefore, the solution set for the inequality is:

$$S = S_1 \cup S_2 = (6, \infty) \cup (-\infty, -1) = \mathbb{R} \setminus [-1, 6]$$

Absolute Value:-

The absolute value of a real number x is denoted by |x| and defined as follows:

$$|x| = \sqrt{x^2} = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -x & \text{if } x < 0 \end{cases}$$

Examples: |-8|=8, $\left|\frac{-2}{3}\right|=\frac{2}{3}$, |9|=9, |0|=0, etc.

Properties of Absolute Value:-

1.
$$|-a| = |a|$$

proof:
$$|-a| = \sqrt{(-a)^2} = \sqrt{a^2} = |a|$$

$$2. ||a|| = |a|$$

proof:
$$||a|| = \sqrt{|a|^2} = \sqrt{a^2} = |a|$$

3.
$$|a.b| = |a|.|b|$$

proof:
$$|a.b| = \sqrt{(a.b)^2} = \sqrt{a^2.b^2} = \sqrt{a^2}.\sqrt{b^2} = |a|.|b|$$

4.
$$\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$
; $b \neq 0$
proof: $\left| \frac{a}{b} \right| = \sqrt{\left(\frac{a}{b} \right)^2} = \sqrt{\frac{a^2}{b^2}} = \frac{\sqrt{a^2}}{\sqrt{b^2}} = \frac{|a|}{|b|}$

5.
$$|a+b| \le |a| + |b|$$

Solving Absolute Value Inequalities:-

The absolute value of x can be written as follows:

$$|x| = \sqrt{x^2} = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

The above definition means the absolute value of any real number is a real non-negative number.

Geometrically, the absolute value of unmber x is the distance point between "x" and the origin point "0". In general, |a-b| is the distance between a and b on the real number line " \mathbb{R} ".

Remarks:

1. To solve the inequality |x| < a where $a, x \in \mathbb{R}$.

Case (1): If
$$x \ge 0 \Longrightarrow |x| = x$$
,
but $|x| < a \Longrightarrow x < a \Longrightarrow S_1 = (-\infty, a)$

Case (2): If
$$x < 0 \Longrightarrow |x| = -x$$
,

but
$$|x| < a \Longrightarrow -x < a \Longrightarrow x > -a$$
. $\Longrightarrow S_2 = (-a, \infty)$

Since,
$$S = S_1 \cap S_2$$

$$\implies \{x \in \mathbb{R} : |x| < a\} = \{x \in \mathbb{R} : -a < x < a\} = (-a, a)$$

Similarly,

$$\Longrightarrow \{x \in \mathbb{R} : |x| \le a\} = \{x \in \mathbb{R} : -a \le x \le a\} = [-a, a]$$

2. To solve the inequality |x| > a where $a, x \in \mathbb{R}$.

Case (1): If
$$x \ge 0 \Longrightarrow |x| = x$$
,

but
$$|x| > a \Longrightarrow x > a$$
. $\Longrightarrow S_1 = (a, \infty)$

Case (2): If
$$x < 0 \Longrightarrow |x| = -x$$
,

but
$$|x| > a \Longrightarrow -x > a \Longrightarrow x < -a$$
. $\Longrightarrow S_2 = (-\infty, -a)$

Since,
$$S = S_1 \cup S_2$$

$$\Longrightarrow \{x \in \mathbb{R} : |x| > a\} = (a, \infty) \cup (-\infty, -a) = \mathbb{R} \setminus [-a, a]$$

Similarly,

$$\Longrightarrow \{x \in \mathbb{R} : |x| \ge a\} = [a, \infty) \cup (-\infty, -a] = \mathbb{R} \setminus (-a, a)$$

Examples:- Find the solution set for the following inequalities?

 $\bullet |x| > 3$

solution:-

$${x \in \mathbb{R} : |x| > 3} = {x \in \mathbb{R} : x > 3 \text{ or } x < -3} =$$

$$(3,\infty)\cup(-\infty,-3)=\mathbb{R}\setminus[-3,3]$$

 \bullet $|x| \leq 4$

solution:-

$$\{x \in \mathbb{R} : |x| \le 4\} = \{x \in \mathbb{R} : -4 \le x \le 4\} = [-4, 4]$$

• |x-4| < 5

solution:-

$$\{x \in \mathbb{R} : |x - 4| < 5\} = \{x \in \mathbb{R} : -5 < x - 4 < 5\}$$
$$= \{x \in \mathbb{R} : -1 < x < 9\} = (-1, 9)$$

• $|7 - 4x| \ge 1$

solution:-

$$\{x \in \mathbb{R} : |x - 4| \ge 1\} = \{x \in \mathbb{R} : 7 - 4x \ge 1 \text{ or } 7 - 4x \le -1\}$$

$$= \{x \in \mathbb{R} : -4x \ge -6 \text{ or } -4x \le -8\}$$

$$= \{x \in \mathbb{R} : x \le \frac{3}{2} \text{ or } x \ge 2\}$$

$$= (-\infty, \frac{3}{2}] \cup [2, \infty)$$

$$= \mathbb{R} \setminus (\frac{3}{2}, 2)$$

Problems 1.1:

- 1. Write the following sets equivalent interval, and test of these intervals whether they are Open, <u>Close</u> or Half Open Intervals:
 - (a) $\{x : -20 \le x \le -12\}$ (c) $\{x : -1 < x < 10\}$
 - (b) $\{x: -3 \le x < 4\}$
- (d) $\{x : -2 < x \le 0\}$

2. Give a description of the following intervals as sets:

(a) (3,5)

(c) [2,7]

(e) (-4,4)

(b) (-3,0)

(d) [-5, -1)

(f) (-0,7]

3. Find the solution set of the following inequalities:

(a) x(x-3) > 4

(h) 6x - 4 > 7x + 2

(b) $2 < \frac{1}{x}$; $x \neq 0$

(i) $x^2 \le 16$

(c) $x^2 \ge 25$

(i) $3x^2 > 2x + 5$

(d) $x^2 - 2x - 24 < 0$

(k) $x^2 > 5x + 6$

(e) $-7 \le -3x + 5 \le 14$

(l) $\frac{x-3}{x+2} < 5$

(f) $\frac{x}{x-3} < 4$

(m) $\frac{1}{x-2} > \frac{2}{x+3}$

(g) $\frac{x^2+2x-35}{x+2} > 0$

(n) $\frac{x-2}{x+3} < \frac{1}{2}$

4. Find the solution set of the following inequalities:

(a) $|x| \ge 5$

(g) $\frac{|2-x|}{3x} \le 1$

(b) |x| < 2

(h) $\left| \frac{3+2x}{3x} \right| \le 1$

(c) $|3x + 3| \ge 2$

(i) $|x - 1| \ge 6$

(d) $1 \le \left| \frac{x-3}{1-2x} \right| \le 2$

(j) $|2 - 2x| \le 7$

(e) $\left| \frac{2-x}{x-3} \right| \ge 4$

(f) |x+1| < |3x+4|

(k) $\left| \frac{4}{2r+1} \right| \le 3$