

Subject: Control Engineering Fundamentals / Code (MU0223003)
Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term – Lecture No.13, Routh-Hurwitz Criterion

Routh-Hurwitz Criterion

This represents a method of determining the location of poles of a characteristic equation with respect to the left half and right half of the s-plane without actually solving the equation.

The T.F. of any linear closed loop system can be represented as,

$$\frac{C(s)}{R(s)} = \frac{b_0 \ s^m + b_1 \ s^{m-1} + \dots + b_m}{a_0 s^n + a_1 \ s^{n-1} + \dots + a_n} = \frac{B(s)}{F(s)}$$

where 'a' and 'b' are constants.

To find closed loop poles we equate F(s) = 0. This equation is called **characteristic** equation of the system.

i.e.
$$F(s) = a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_n = 0$$

Thus the roots of the characteristic equation are the closed loop poles of the system which decide the stability of the system.

Hurwitz's Criterion

The necessary and sufficient condition to have all roots of characteristic equation in left half of s-plane is that the sub-determinants D_K , K=1,2,....n obtained from Hurwitz's determinant 'H' must all be positive.

Subject: Control Engineering Fundamentals / Code (MU0223003)

Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term - Lecture No.13, Routh-Hurwitz Criterion

$$F(s) = a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_n = 0$$

Method of forming Hurwitz determinant :

$$H = \begin{bmatrix} a_1 & a_3 & a_5 & \dots & a_{2n-1} \\ a_0 & a_2 & a_4 & \dots & a_{2n-2} \\ 0 & a_1 & a_3 & \dots & a_{2n-3} \\ 0 & a_0 & a_2 & \dots & a_{2n-4} \\ 0 & 0 & a_1 & \dots & a_{2n-5} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \ddots & \dots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots$$

$$D_1 = |a_1| \qquad D_2 = \begin{vmatrix} a_1 & a_3 \\ a_0 & a_2 \end{vmatrix} \qquad D_3 = \begin{vmatrix} a_1 & a_3 & a_5 \\ a_0 & a_2 & a_4 \\ 0 & a_1 & a_3 \end{vmatrix} \qquad D_K = |H|$$

For the system to be stable, all the above determinants must be positive.

Example: Determine the stability of the given characteristic equation by Hurwitz's method.

$$F(s) = s^3 + s^2 + s^1 + 4 = 0$$
 is characteristic equation.

As D₂ and D₃ are negative, given system is unstable.

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term – Lecture No.13, Routh-Hurwitz Criterion

Examples on Hiwartz Criterion (Multiple Choice Questions)

1-D1 of the Hiwartz stability methods of the given characteristic equation

 $F(s) = S^3 + S^2 + S + 4 = 0$ is

- A) 1 B) -3 C) -12 D) 4
- 2-D2 of the Hiwartz stability methods of the given characteristic equation

 $F(s) = S^3 + S^2 + S + 4 = 0$ is

- A) 1 B) -3 C) -12 D) 4
- 3-D3 of the Hiwartz stability methods of the given characteristic equation

 $F(s) = S^3 + S^2 + S + 4 = 0$ is

- A) 1 B) -3 C) -12 D) 4
- 4- the Hiwartz stability methods of the given characteristic equation

 $F(s) = S^3 + S^2 + S + 4 = 0$ is

- A) Stable, B) unstable, C) Marginally, D) Critically
- 5- For the Hiwartz stability we use as the T.F

 - A) G(s) H(s) B) 1+ G(s)H(s) C) G(s) D) G(s)/H(s)

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term - Lecture No.13, Routh-Hurwitz Criterion

6- According to Hurwitz criterion, the characteristic equation.

$$S^4 + 8S^3 + 18S^2 + 16S + 5 = 0$$

- a) The system is stable
- b) The system is marginally stable
- c) The system is unstable
- d) None of these

$$H = \left| \begin{array}{cccc} 8 & 16 & 0 & 0 \\ 1 & 18 & 5 & 0 \\ 0 & 8 & 16 & 0 \\ 0 & 1 & 18 & 5 \end{array} \right|$$

$$D_2 = \begin{vmatrix} 8 & 16 \\ 1 & 8 \end{vmatrix} = 8 \times 18 - 16 = 128$$

 $D_1 = |8| = 8$

$$D_{3} = \begin{vmatrix} 8 & 16 & 0 \\ 1 & 18 & 5 \\ 0 & 8 & 16 \end{vmatrix} = 8 \times \begin{vmatrix} 18 & 5 \\ 8 & 16 \end{vmatrix} - 16 \times \begin{vmatrix} 1 & 5 \\ 0 & 16 \end{vmatrix} + 0 \times \begin{vmatrix} 1 & 18 \\ 0 & 8 \end{vmatrix} = 1984 - 256 - 0 = 1728$$

$$D_4 = \begin{vmatrix} 8 & 16 & 0 & 0 \\ 1 & 18 & 5 & 0 \\ 0 & 8 & 16 & 0 \\ 0 & 1 & 18 & 5 \end{vmatrix} = 5 \times \begin{vmatrix} 8 & 16 & 0 \\ 1 & 18 & 5 \\ 0 & 8 & 16 \end{vmatrix} = 5 \times 1728 = 8640$$

D₁, D₂, D₃ and D₄ are positive

- 7- in Hurwitz criterion, the system to be sable if all determinate must me ------
 - A) Zero b) 1 c) negative d) positive
- $8 extstyle{8 extstyle{40}}$ in Hurwitz criterion, if all determinates are positive then the system will be -----
 - A) Stable b) unstable c) marginally stable d) conditionally stable

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term – Lecture No.13, Routh-Hurwitz Criterion

9- i	in Hurwitz	criterion, if a	l determinates	are positive then	the system will be
-------------	------------	-----------------	----------------	-------------------	--------------------

- A) Stable

- b) unstable c) marginally stable d) conditionally stable

- A) Stable
- b) unstable

 - c) marginally stable d) conditionally stable

- A) Stable
- b) unstable

 - c) marginally stable d) conditionally stable

12. For the characteristic equation:

$$s^3 + 7s^2 + 14s + K = 0$$

What is the range of (K) for which the system is stable?

- A) K > 0 B) K < 98 C) 0 < K < 98 D) K > 98

Answer: C)
$$0 < K < 98$$

13. For the characteristic equation:

$$s^3 + 3s^2 + 3s + K = 0$$

What is the range of (K) for which the system is stable?

- A) (K > 0) B) (K < 9) C) (0 < K < 9) D) (K > 9)

Answer: C) (0 < K < 9)

Subject: Control Engineering Fundamentals / Code (MU0223003)
Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term – Lecture No.13, Routh-Hurwitz Criterion

Examples on pole -zero (Multiple Choice Questions)

1	The value of "s", w	hich make the T.F infinite after
substitution in	the denominator of a T.I	7,
A) Pole, B) Zero, C) Stability,	D) Characteristic Equation
2	The value of "s", w	rhich make the T.F zero after
substitution in	the numerator of a T.F,	
A) Pole, B)	Zero, C) Stability, I	O) Characteristic Equation
3- The S- plane ca	n be divided in to three o	listinct zone which is stable, unstable
and		
A) Pure stat	ole , B) unstable , C) Mar	ginally stable D) absolutely stable
4- The system is (unstable) if the Poles ar	e in
A) LHS B)	RHS C) on Imj axis	D) two non-repeated pair on Imj axis

Third Class

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term - Lecture No.13, Routh-Hurwitz Criterion

59-The value of (s) which make the transfer function -----after the substitution in the denominator of a T.F are called "poles" of that T.F

a) Zero b) infinite c) 1 d) -1

60-The value of (s) which make the transfer function -----after the substitution in the nominator of a T.F are called "zeros" of that T.F

a) Zero b) infinite c) 1 d) -1

$$61 - T(s) = \frac{2(S+1)^2(S+2)(S^2+2S+2)}{S^3(S^2+6S+25)(S+4)}$$
, the simple zero of this equation is

a)
$$S=-1$$
 b) $S=-2$ c) $S=-1\pm j$ d) $s=1$

$$62 - T(s) = \frac{2(S+1)^2(S+2)(S^2+2S+2)}{S^3(S^2+6S+25)(S+4)}$$
, the repeated zero of this equation is

a)
$$S=-1$$
 b)S=-2 c) S=-1± j d)s=1

$$63 - T(s) = \frac{2(S+1)^2(S+2)(S^2+2S+2)}{S^3(S^2+6S+25)(S+4)}$$
 , the complex zero of this equation is

a)
$$S=-1$$
 b)S =-2 c) $S=-1\pm j$ d) $S=1$

$$64 - \frac{(S+2)}{S(S^2+2S+2)(S^2+7S+12)}$$
 in this equation, the number of zeros is:

$$65 - \frac{(S+2)}{S(S^2+2S+2)(S^2+7S+12)}$$
 in this equation, the number of poles is:

$$67 - \frac{(S+2)}{S(S^2+2S+2)(S^2+7S+12)}$$
 in this equation, the simple pole is:

a)
$$S = 0$$

b)
$$S = -3$$

a)
$$S = 0$$
 b) $S = -3$ C) $S = -4$ d) $S = -1 \pm i$

d)
$$s=-1 \pm$$

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term – Lecture No.13, Routh-Hurwitz Criterion

$$68 - \frac{(S+2)}{S(S^2+2S+2)(S^2+7S+12)}$$
 in this equation, the complex pole is:

A) S = 0 b) S = -3 C) S = -4 d) $S = -1 \pm j$

$$69 - \frac{(S+2)}{S(S^2+2S+2)(S^2+7S+12)}$$
 in this equation, the repeated pole is:

B) S = 0 b) S= -3 C) S=-4 d) None of them

70- Control system can be -----

a) Stable b) unstable c) marginally stable d) all of them

71-If the real negative poles located in the L.H.S of S-plane, that's means the stability condition is -

A) Stable b) unstable c) marginally stable d) all of them-

72-Complex conjugate with the negative real part poles located in L.H.S of S-plane, which means the stability condition is -----

A) Stable b) unstable c) marginally stable d) all of them

73- Real positive poles located in the R.H.S of S-plane, which means the system is------

A) Stable b) unstable c) marginally stable d) all of them

74- complex conjugate with the positive real part poles located in the R.H.S of S-plane, which means the stability condition-----

A) Stable b) unstable c) marginally stable d) all of them

75- non-repeated pair pole on Imaginary axis with no real part on the R.H.S of S-plane, which means the stability condition is -----

A) Stable b) unstable c) marginally stable d) all of them

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term – Lecture No.13, Routh-Hurwitz Criterion

76- non-repeated pair pole on Imaginary axis with no real part on the R.H.S of S-plane , which means the stability condition is						
A) Stable b) unstable c) conditionally stable d) critically stable						
77-repeated pair pole on the Imaginary axis without any pole in the R.H.S of the S-plane, which means the stability condition is						
A) Stable b) unstable c) marginally stable d) all of them						
78- in Hurwitz criterion, the system to be sable if all determinate must me						
A) Zero b) 1 c) negative d) positive						
79 - in Hurwitz criterion, if all determinates are positive then the system will be						
A) Stable b) unstable c) marginally stable d) conditionally stable						
80 - in Hurwitz criterion, if one determent is negative then the system will be						
A) Stable b) unstable c) marginally stable d) conditionally stable						
81- in Hurwitz criterion, if two determents are negative then the system will be						
A) Stable b) unstable c) marginally stable d) conditionally stable						
82 - in Hurwitz criterion, if all determents are negative then the system will be						
A) Stable b) unstable c) marginally stable d) conditionally stable						
83 - in Routh criterion, if there is any sign change, then the system will be						
A) Stable b) unstable c) marginally stable d) conditionally stable						
-,						
84 - in the Routh criterion, the number of sign changes is the number of the roots lying in the RHS of the S-plane						
A) greater than b) equal c) less than d) none of them						
85- in the Routh criterion, if there is no sign change in the first column, then the system is						
A) Stable b) unstable c) marginally stable d) conditionally stable						

Subject: Control Engineering Fundamentals / Code (MU0223003) Lecturer: Prof. Dr. Abdulrahim Thiab Humod

2nd term – Lecture No.13, Routh-Hurwitz Criterion

85- in the Routh criterion, if there is a sign change in the first column, then the system is

A) Stable b) unstable c) marginally stable d) conditionally stable

86- in the Routh criterion, if there is one sign change in the first column, then the system is

A) Stable b) unstable c) marginally stable d) conditionally stable

87- in the Routh criterion, if there is one sign change in the first column, then there is ------ pole in the RHS of the S-plane

a) one b) two c) there d) zero

88- in the Routh criterion, if there are two sign changes in the first column, then there is ------ pole in the RHS of the S-plane

a) one b) two c) there d) zero