



Subject Name: Calculus I

1st Class, First Semester

Academic Year: 2024-2025

Lecturer: Dr. Amir N.Saud

Email: amir-najah@uomus.edu.iq

Lecture No. 5

**Lecture Title: Differentiation** 

## **CHAPTER FOUR: Differentiation**

For each point on the curve y = f(x), there is a single straight tangent line at the point; The slop of straight tangent of the curve y = f(x) at the point (x, f(x)) represents the derivative at that point.



Let P(x, f(x)) be a fixed point on the curve; and  $Q(x + \Delta x, f(x + \Delta x))$ be another point, so  $\Delta y = f(x + \Delta x) - f(x)$ .



Note that: At  $\Delta x$ , decreasing length (close to zero) the straight secant PQ more and more applicability begins on the straight tangent at the point (x, f(x)). When  $(\Delta x \to 0)$ , knowing that the slop straight tangent at the point (x, f(x)) represents a derived function at that point.

$$m_{tan} = \lim_{\Delta x \to 0} m_{sec} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

**Remark**: When the value of the limit exist, the function is called differentiable function, and f' is called the derivative of f at x.

**Remark**: The equation of the tangent line at a point  $(x_1, y_1)$  is given by the following form:

$$y - y_1) = m_{tan}(x - x_1)$$

<u>Definition</u>: The normal line of a curve is the line that is perpendicular to the tangent of the curve at a particular.

$$m_{\perp} = rac{-1}{m_{tan}}$$

**Remark**: The equation of the normal line at a point  $(x_1, y_1)$  is given by the following form:

$$(y - y_1) = m_{\perp}(x - x_1)$$

**Note** 
$$f'(x) = y' = \frac{dy}{dx} = \frac{df(x)}{dx}$$

**Example 1:** Let f(x) = 4x - 2, find f'(x) by using the definition? Solution:-

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
  
\therefore 
$$f(x) = 4x - 2, f(x + \Delta x) = 4(x + \Delta x) - 2$$

$$\implies f'(x) = \lim_{\Delta x \to 0} \frac{[4(x + \Delta x) - 2] - [4x - 2])}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{4x + 4\Delta x - 2 - 4x + 2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{4\Delta x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} 4 = 4$$

**Example 2:** Let  $f(x) = \sqrt{x}$ , find the equation of the tangent line and normal line at the point (4,2) by using the definition?

## Solution:-

We need to find:  $m_{tan}]_{(4,2)} = f'(x)]_{(4,2)}$ 

$$\Rightarrow f'(x) = \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x} \cdot \frac{\sqrt{x + \Delta x} + \sqrt{x}}{\sqrt{x + \Delta x} + \sqrt{x}}$$

$$= \lim_{\Delta x \to 0} \frac{(x + \Delta x) - x}{\Delta x (\sqrt{x + \Delta x} + \sqrt{x})}$$

$$= \lim_{\Delta x \to 0} \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}}$$

$$= \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

$$\implies m_{tan} = \frac{1}{2\sqrt{x}} \implies m_{tan}]_{(4,2)} = f'(x)]_{(4,2)} = \frac{1}{2\sqrt{4}}$$

Now, we need to find the equation of the tangent line at the point

$$(y - y_1) = m_{tan}(x - x_1)$$

$$\implies y - 2 = \frac{1}{4}(x - 4)$$

$$\implies y = \frac{1}{4}x + 1$$

 $(x_1, y_1) = (4, 2)$ 

Next, we need to find the equation of the normal line at the point  $(x_1, y_1) = (4, 2)$ 

## Problems 4.1:

1. Find f'(x) by using the definition of the following function:-

(a) 
$$f(x) = x^2$$

(b) 
$$f(x) = 4 - \sqrt{x+3}$$

- 2. Let  $f(x) = x^2$ , find the equation of the tangent line and normal line at the point (3,9) by using the definition.
- 3. Let  $f(x) = \sqrt{x+3}$ , find the equation of the tangent line at x=2.

## Differentiable VS. Continuous:

**Theorem:** If f(x) is a differentiable function at  $x_0$ , then it is a continuous function at  $x_0$ .

**Proof:** To prove f(x) is continuous function at  $x_0$ ,

we need to show: 
$$\lim_{x\to 0} f(x) = f(x_0)$$
 (i.e.,  $\lim_{x\to 0} [f(x) - f(x_0)] = 0$ )

Suppose that:

$$\Delta x = x - x_0 \implies x = x_0 + \Delta x \implies f(x) = f(x_0 + \Delta x)$$

Hence, when  $x \to 0$ ,  $\Delta x \to 0$ 

$$\lim_{x \to 0} [f(x) - f(x_0)] = \lim_{x \to 0} [f(x_0 + \Delta x) - f(x_0)]$$

$$= \lim_{x \to 0} \left[ \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} . \Delta x \right]$$

$$= \lim_{x \to 0} \left[ \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} . \lim_{x \to 0} \Delta x \right]$$

$$= f'(x_0) . 0 = 0$$

**Note** The inverse of the above theorem is not true.

(i.e., If f(x) is a continuous at  $x_0$ , then it is not necessary to be differentiable at  $x_0$ )

**Example:** Let f(x) = |x|, and  $x_0 = 0$ .

From the above plot f(x) = |x| is continuous at  $x_0 = 0$ .

However, f(x) = |x| is **not differentiable** at  $x_0 = 0$ .

**Proof:** 

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

$$|\Delta x| = \begin{cases} \Delta x & \Delta x \ge 0 \\ -\Delta x & \Delta x < 0 \end{cases}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{|x + \Delta x| - |x|}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{|0 + \Delta x| - |0|}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}$$

Hence, 
$$L^+ = \lim_{\Delta x \to 0^+} = 1 \& L^- = \lim_{\Delta x \to 0^-} = -1$$

Since,  $L^+ \neq L^- \implies$  The limit does not exists.

 $\therefore f(x)$  is not a differentiable function at  $x_0 = 0$ 

