

Mathematics and Biostatistics

First Stage

LECTURE 6 Biostatistics

BY

Asst. Lecturer Sajjad Ibrahim Ismael

Asst. Lecturer Rusul Khalil Hussein

2024-2025

OUTLINE

Biostatistics:

- General concepts of statistics,
- Statistical methods,
- Statistical theory,
- Applied statistics,
- Statistical operations

INTRODUCTION TO BIOSTATISTICS

• **Definition**: Biostatistics applies statistical methods to biological, medical, and health-related data.

Purpose:

- Analyze experiments and research data.
- Draw conclusions about populations based on sample data.

GENERAL CONCEPTS IN BIOSTATISTICS

Population and Sample:

- Population: Entire group under study (e.g., all diabetic patients).
- Sample: Subset of the population (e.g., 100 diabetic patients randomly selected).

Types of Data:

- Qualitative: Categorical (e.g., blood type, gender).
- Quantitative: Numerical (e.g., blood pressure, weight).
 - Discrete: Countable (e.g., number of visits to a doctor).
 - Continuous: Measurable (e.g., height, weight).

Smokers

Smoking Prevalence

TYPES OF DATA (CONTINUED)

Levels of Measurement:

- Nominal: No order (e.g., blood groups).
- Ordinal: Meaningful order (e.g., cancer stages).
- Interval: Measurable, no true zero (e.g., temperature).
- Ratio: Measurable, with true zero (e.g., weight).

Sampling Techniques:

- Simple Random Sampling: Equal chance of selection.
- Stratified Sampling: Sampling from subgroups.
- Systematic Sampling: Selecting every nth individual.

DESCRIPTIVE VS. INFERENTIAL STATISTICS

- Descriptive Statistics: Summarizing and organizing data.
 - Measures of Central Tendency: Mean, Median, Mode. Example: The average (mean) age of patients in a study is 45 years, the median is 43 years, and the mode is 40 years.
 - Measures of Dispersion: Range, Variance, Standard Deviation.
 Example: An SD of 5 years indicates most patient ages are within 5 years of the mean.
- Inferential Statistics: Making predictions about a population based on sample data.
 - Hypothesis Testing: e.g., t-tests, chi-square tests.
 - Confidence Intervals (Cls): Range of values likely containing the true parameter.

EXAMPLE (MEAN, MEDIAN, MODE)

Chi-square test visualization that shows observed vs expected frequencies for a set of categories.

STATISTICAL METHODS IN BIOSTATISTICS

Descriptive Statistics:

- Central Tendency: Mean, Median, Mode.
- Dispersion: Variance, Standard Deviation.

Inferential Statistics:

- Hypothesis Testing: Null and Alternative Hypotheses.
- Confidence Intervals: Estimation of population parameters.
- P-value: Testing the significance of results.

STATISTICAL THEORY

Probability Theory:

- Models uncertainty and randomness in data.
- Example: Probability of patient recovery after treatment.

Distribution Theory:

- Normal Distribution: Bell curve (e.g., BMI distribution).
- Binomial Distribution: For binary outcomes (e.g., success/failure).
- Poisson Distribution: For rare events (e.g., cancer cases).

Estimation Theory:

- Estimating population parameters based on sample data.
- Example: Estimating diabetes prevalence.

APPLIED STATISTICS IN BIOSTATISTICS

Clinical Trials:

- Objective: Evaluate treatment efficacy and safety.
- Example: Randomized controlled trials (RCTs).

Epidemiology:

- Objective: Study disease patterns and risk factors.
- Example: Incidence rate of COVID-19 in a population.

Public Health:

- Objective: Monitor health indicators across populations.
- Example: Vaccination coverage trends.

Genetics:

- Objective: Analyze genetic data for health outcomes.
- Example: Genetic markers for hereditary diseases.

STATISTICAL OPERATIONS IN BIOSTATISTICS

Data Collection:

- Surveys, experiments, observational studies.
- Example: Survey on dietary habits among hypertensive patients.

Data Cleaning and Preparation:

- Handling missing data and removing outliers.
- Example: Interpolation to fill missing BMI values.

STATISTICAL ANALYSIS AND TOOLS

Statistical Analysis:

- Using software such as R, SPSS, or SAS for computation.
- Example: Performing a chi-square test or ANOVA.

Data Visualization:

- Graphs: Bar charts, histograms, scatter plots.
- Example: Using histograms to show distribution of cholesterol levels.

This represents the distribution of cholesterol levels, showing how frequency changes across different cholesterol levels.

EXAMPLE STUDY - SMOKING AND LUNG CANCER

- Objective: Investigate the relationship between smoking and lung cancer.
- Steps:
- Data Collection:
 - Sample Size: 1,000 individuals.
 - Variables: Smoking status (yes/no), lung cancer diagnosis (yes/no).
- Descriptive Statistics:
 - 60% smokers (600), 40% lung cancer cases (200).

CONCLUSION

Summary:

- Biostatistics is vital for health-related research.
- Provides tools for analyzing and interpreting data.
- Applied in clinical trials, epidemiology, public health, and genetics.

Importance:

Helps in making informed decisions in medicine and health policies.

Thanks for lessening ..

Any questions?