

Al-Mustaqbal University
Department (الأجهزة الطبية)
Class (الرابعة)
Subject (الغيز رالطبية)
Lecturer (أ.د علاء حسين علي)
1sterm – Lect. (laser types)

Types of Laser Generation Mechanisms

(A) Continuous Wave (CW) Lasers

- Emit a constant laser beam.
- Examples: CO₂ lasers (used in industrial cutting), fiber lasers.

(B) Pulsed Lasers

- Emit energy in short bursts.
- Methods:
 - **Q-switching**: Produces short, high-energy pulses (used in tattoo removal).
 - Mode-locking: Creates ultrafast pulses (femtosecond or picosecond range) used in precision surgery and spectroscopy.

1.1 Laser Classifications

(A) Based on Gain Medium

Type	Example	Applications
Gas Lasers	CO ₂ , He-Ne, Argon	Cutting, welding, holography
Solid-State Lasers	Nd:YAG, Ruby	Medicine, defense, material processing
Semiconductor (Diode) Lasers	GaAs (Gallium Arsenide)	Communication, consumer electronics
Fiber Lasers	Ytterbium-doped fiber	High-power industrial cutting, marking
Excimer Lasers	ArF (Argon Fluoride)	LASIK eye surgery, semiconductor lithography

Al-Mustaqbal University
Department (الأجهزة الطبية)
Class (الرابعة)
Subject (نظم الليز رالطبية)
Lecturer (أ.د علاء حسين علي)
1sterm – Lect. (laser types)

(B) Based on Output Power

- Low Power (<1 mW): Laser pointers, barcode scanners.
- Medium Power (1 mW 1 W): Laser printers, optical storage.
- **High Power** (>1 W): Industrial cutting, military applications.

(C) Based on Wavelength

- Infrared (IR) Lasers (700 nm 1 mm): CO₂ lasers for cutting and medical uses.
- **Visible Lasers** (400-700 nm): He-Ne lasers, diode lasers.
- **Ultraviolet (UV) Lasers** (<400 nm): Excimer lasers for micromachining.

1.2 Advanced Laser Technologies

(A) Free-Electron Lasers (FEL)

- Generate extremely high-power, tunable lasers.
- Used in advanced physics research and military applications.

(B) Quantum Cascade Lasers (QCL)

- Emit mid-infrared light.
- Used in spectroscopy and security scanning.

(C) High-Energy Laser Weapons

Directed energy weapons being developed for missile defense.

Al-Mustaqbal University
Department (الاجهزة الطبية)
Class (الرابعة)
Subject (نظم الليزرالطبية)
Lecturer (أ.د علاء حسين علي)
1sterm – Lect. (laser types)

(D) X-ray Lasers

Used in atomic research and nanotechnology.

1.3 Cutting-Edge Applications of Laser Generation

(A) Industrial & Manufacturing

- Laser Cutting & Welding: CO₂ and fiber lasers are widely used.
- 3D Printing (Additive Manufacturing): Uses laser sintering techniques.
- Marking & Engraving: Used for product serialization.

(B) Medical & Healthcare

- LASIK Eye Surgery: Excimer lasers reshape the cornea.
- Cancer Treatment: Photodynamic therapy uses laser-activated drugs.
- **Dermatology & Aesthetics**: Used for tattoo removal, hair removal, and skin resurfacing.

(C) Military & Defense

- Laser Weapon Systems (LaWS): Used by the U.S. Navy for targeting drones and missiles.
- LIDAR (Light Detection and Ranging): Used for reconnaissance and surveillance.

(D) Communication & Data Transmission

- Optical Fiber Communication: Semiconductor lasers transmit data over long distances.
- Quantum Cryptography: Uses laser-generated photons for secure communication.

Al-Mustaqbal University
Department (الأجهزة الطبية)
Class (الرابعة)
Subject (نظم الليز رالطبية)
Lecturer (أ. علاء حسين علي)
1sterm – Lect. (laser types)

1.4 Future Trends in Laser Technology

- Miniaturization: Development of compact, high-power laser diodes.
- Ultrafast Lasers: Advancements in femtosecond and attosecond laser pulses.
- Laser Fusion Energy: Potential clean energy source via inertial confinement fusion.
- **AI-Optimized Lasers**: Machine learning helps optimize laser parameters in real time.