The Endocrine System

- Uses chemical messages (hormones) that are released into the blood
- Hormones control several major processes:
 - Reproduction
 - Growth and development
 - Mobilization of body defenses
 - Maintenance of homeostasis
 - Regulation of metabolism

The Chemistry of Hormones

- Amino acid-based hormones:
 - Proteins
 - Peptides
 - Amines
- Steroids made from cholesterol.
- Prostaglandins made from highly active lipids.

Effects Caused by Hormones:

- ☐ Changes in plasma membrane permeability or electrical state.
- ☐ Synthesis of proteins, such as enzymes.
- Activation or inactivation of enzymes.
- ☐ Stimulation of mitosis.

Steroid Hormone Action:

- ☐ Diffuse through the plasma membrane of target cells.
- ☐ Enter the nucleus.
- ☐ Bind to a specific protein within the nucleus.
- ☐ Bind to specific sites on the cell's DNA.
- Activate genes that result in the synthesis of new proteins.

Steroid Hormone Action

(a) Steroid hormone action

Figure 9.1a

Nonsteroid Hormone Action

- ☐ Hormone binds to a membrane receptor.
- ☐ Hormone does not enter the cell.
- ☐ Sets off a series of reactions that. activate an enzyme.
- ☐ Catalyzes a reaction that produces a second messenger molecule.
- ☐ Oversees additional intracellular changes to promote a specific response.

Nonsteroid Hormone Action

(b) Nonsteroid hormone action

Figure 9.1b

Control of Hormone Release:

- ☐ Hormone levels in the blood are maintained by negative feedback.
- ☐ A stimulus or low hormone levels in the blood triggers more hormone release.
- ☐ Hormone release stops once an appropriate level in the blood is reached.

Hormonal Stimuli of Endocrine Glands

Other activate glands.

hormones endocrine

Location of Major Endrocrine Organs

Pituitary Gland:

- ☐ Hangs by a stalk from the hypothalamus.
- Has two functional lobes:
 - ☐ Anterior pituitary glandular tissue.
 - □ Posterior pituitary nervous tissue.

Hormones of the Anterior Pituitary

- ☐ Six anterior pituitary hormones.
- ☐ Two affect non-endocrine targets.
 - ☐ Four stimulate other endocrine glands (tropic hormones).
- Characteristics of all anterior pituitary hormones:
 - Proteins (or peptides).
 - ☐ Act through second-messenger systems.
 - Regulated by hormonal stimuli, mostly negative feedback.

Hormones of the Anterior Pituitary

Figure 9.4

Growth Hormone (GH);

- ☐ General metabolic hormone.
- ☐ Major effects are directed to the growth of skeletal muscles and long bones.
- Causes amino acids to be built into proteins.
- Causes fats to be broken down for a source of energy.

Functions of Other Anterior Pituitary Hormones

- ☐ Prolactin (PRL):
 - Stimulates and maintains milk production following childbirth.
- ☐ Adrenocorticotropic hormone (ACTH):
 - Regulates endocrine activity of the adrenal cortex.
- ☐ Thyroid-stimulating hormone (TSH).
 - ☐ Influences growth and activity of the thyroid.

Functions of Other Anterior Pituitary Hormones

- ☐ Gonadotropic hormones:
 - Regulate hormonal activity of the gonads.
 - ☐ Follicle-stimulating hormone (FSH):
 - Stimulates follicle development. In ovaries.
 - Stimulates sperm development in the testes.

Functions of Other Anterior Pituitary Hormones:

- **Gonadotropic hormones:**
 - Luteinizing hormone (LH):
 - ☐ Triggers ovulation.
 - Causes ruptured follicle to become the corpus luteum.
 - Stimulates testosterone production in males.

Pituitary - Hypothalamus Relationship

- Release of hormones is controlled by releasing and inhibiting hormones produced by the hypothalamus.
- The posterior pituitary is not strictly an endocrine gland but does release hormones.

Hormones of the Posterior Pituitary

- Oxytocin:
 - Stimulates contractions of the uterus during labor.
 - Causes milk ejection.
- Antidiuretic hormone (ADH):
 - Can inhibit urine production.
 - □ In large amounts, causes vasoconstriction leading to increased blood pressure (vasopressin).

Hormones of the Posterior Pituitary

Figure 9.5

Thyroid Gland:

- ☐ Found at the base of the throat.
- Consists of two lobes.
- Produces <u>two hormones</u>.
 - ☐ Thyroid hormones.
 - Calcitonin.

Thyroid Gland

Thyroid Hormones:

- Major metabolic hormones.
- Composed of two active iodinecontaining hormones.
 - Thyroxine (T₄) secreted by thyroid follicles.
 - □ Triiodothyronine (T₃) convert to T₄ at target tissues.

Calcitonin

- Decreases blood calcium levels by causing its deposition on bone
- Antagonistic to parathyroid hormone
- Produced by C (parafollicular) cells

Figure 9.9

Parathyroid Glands:

- ☐ Tiny masses on the posterior of the thyroid.
- Secrete parathyroid hormone
 - Stimulate osteoclasts to remove calcium from bone.
 - Stimulate the kidneys and intestine to absorb more calcium.
 - Raise calcium levels in the blood.

Adrenal Glands:

Two glands:

- □ Cortex the outer glandular region in three layers.
- ☐ Medulla inner neural tissue region.
- ☐ Sits on top of the kidneys.

Hormones of the Adrenal Cortex

- Mineralocorticoids (mainly aldosterone).
 - Produced in the outer adrenal cortex.
 - Regulate mineral content in blood, water, and electrolyte balance.
 - The target organ is the kidney.
 - Production stimulated by renin and aldosterone.
 - Production inhibited by atrial natriuretic peptide.

Hormones of the Adrenal Cortex

Hormones of the Adrenal Cortex

- Glucocorticoids (including cortisone and cortisol)
 - Produced in the middle layer of the adrenal cortex
 - Promote normal cell metabolism
 - Released in response to increased Adrenocorticotropic hormone (ACTH) blood levels.

Hormones of the Adrenal Context Cortex:

- **□** Sex hormones:
 - Produced in the inner layer of the adrenal cortex.
 - Androgens (male) and estrogen (female)

Hormones of the Adrenal Medulla

- ☐ Produces two similar hormones (catecholamines):
 - Epinephrine
 - Norepinephrine
- ☐ These hormones prepare the body to deal with short-term stress.

Roles of the Hypothalamus and Adrenal Glands in the Stress Response

Pancreatic Islets:

- The islets of the pancreas produce hormones:
 - ☐ Insulin allows glucose to cross plasma membranes into cells from beta cells.
 - ☐ Glucagon allows glucose to enter the blood from alpha cells.
 - These hormones are antagonists that maintain blood sugar homeostasis.

Pancreatic Islets

Figure 9.13

Pancreatic Hormones and Blood Sugar

Pineal Gland:

- Found on the third ventricle of the brain.
- ☐ Secretes melatonin.
 - Helps establish the body's wake and sleep cycles.

Hormones of the Ovaries

- **Estrogens:**
 - Produced by Graafian follicles or the placenta
 - ☐ Stimulates the development of secondary female characteristics.
 - Mature of female reproductive organs.
 - Helps prepare the uterus to receive a fertilized egg.
 - Helps maintain pregnancy.
 - Prepares the breasts to produce milk.

Hormones of the Ovaries

- Progesterone:
 - ☐ Produced by the corpus luteum.
 - ☐ Acts with estrogen to bring about the menstrual cycle.
 - ☐ Helps in the implantation of an embryo in the uterus.

Endocrine Function of the Placenta

- ☐ Produces hormones that maintain the pregnancy.
- ☐ Some hormones play a part in the delivery of the baby.
- Produces Human chorionic gonadotropin (HCG) in addition to estrogen, progesterone, and other hormones.

Developmental Aspects of the Endocrine System

- Most endocrine organs operate smoothly until old age.
 - ☐ Menopause is brought about by the lack of efficiency of the ovaries.
 - Problems associated with reduced. Estrogen is common.
 - ☐ Growth hormone production declines with age.
 - Many endocrine glands decrease output with age.

Introduction to the Central Nervous System (CNS):

- □What is the CNS? (Brain and spinal cord)
- ☐ Its primary function: Control and coordination of bodily functions.
- □Relevance to Pharmacy: Understanding CNS function is crucial for comprehending the mechanism of action of numerous drugs, particularly psychotropics and neurotherapeutics. Many drugs interact with
 - neurotherapeutics. Many drugs interact with CNS receptors or enzymes.

Anatomy of the CNS:

The Brain:

- 1. Cerebrum: The largest part is responsible for higher cognitive functions (thinking, learning, memory, language). lobes: (frontal, parietal, temporal, occipital).
- **2. Cerebellum:** Coordination of movement, balance, posture.
- **3. Brainstem:** (midbrain, pons, medulla oblongata) Controls vital functions (breathing, heart rate, blood pressure).
- **4. Thalamus:** Relays sensory information to the cerebral cortex.
- **5. Hypothalamus:** Regulates homeostasis (temperature, hunger, thirst, hormone release).

The Spinal Cord:

- ☐ Structure: Gray matter (cell bodies) and white matter (axons).
- ☐ Function: Transmits nerve impulses between the brain and the rest of the body.

Cells of the Nervous System:

- Neurons: Structure (cell body, axon, dendrites). Types (sensory, motor, interneurons). Their function: signal transmission (action potentials).
- ☐ Glial Cells: Support and protection of neurons.
- main types: (astrocytes, oligodendrocytes, microglia).

Blood-Brain Barrier (BBB):

- ☐ Definition and function: Protects the brain from harmful substances.
- ☐ Implications for drug delivery: Many drugs struggle to cross the BBB, impacting their effectiveness in treating CNS disorders.

Functions of the CNS:

- Sensory Functions: Reception and processing of sensory information (sight, hearing, smell, taste, touch).
- ☐ Motor Functions: Control of voluntary and involuntary movements.
- ☐ **Higher-order functions**: Cognition, memory, learning, language, and emotion.