ALMUSTAQBAL UNIVERSITY COLLEGE

College of Medical and Health Techniques

Medical Laboratories Techniques Department

Stage: First year students

Subject : Chemistry 1 - Lecture 8

Lecturer: Assistant professor Dr. SADIQ . J. BAQIR

Buffer solutions

A buffer solution is a combination of either a weak acid and its conjugate base (supplied by a salt) or a weak base and its conjugate acid (supplied by a salt). Buffer systems resist changes in the pH of a solution due to dilution or the addition of small amounts of strong acid or base. Buffers are used to maintain the pH of solutions at a relatively constant and predetermined level. Usually, buffers have a useful pH range = $pK \pm 1$,

Buffers play a vital role in maintaining the pH of body fluids.

Calculation of the pH of different types of Buffer solutions

1. Acidic buffers

Consists of weak acid (HA) and its salt (A⁻) . Typical example is (acetic acid – acetate salt (CH₃COOH – CH₃COO⁻)

$$HA + H_2O \rightleftharpoons H_3O^+ + A^-$$
 1

Ka =
$$\frac{[H_3 O^+][A^-]}{[HA]}$$

$$A^- + H_2O \rightleftharpoons OH^- + HA \longrightarrow 2$$

$$K_b = \frac{[OH][HA]}{[A-]} = \frac{Kw}{Ka}$$

equilibrium 1 will decrease C_{HA} by the amount $[H_3O^+]$ and equilibrium 2 will increase it by the amount $[OH^-]$.

$$[HA]_{equil.} = C_{HA} - [H_3O^+] + [OH^-]$$

Similarly, equilibrium 1 will increase $[A^-]$ by the amount $[H_3O^+]$

while equilibrium ② will decrease [A¯] by the amount [OH¯] then

$$[A^{-}]_{equil.} = C_{A-} + [H_3O^{+}] - [OH^{-}]$$

As we have acid then

$$[HA] = C_{HA} - [H_3O^{\scriptscriptstyle +}]$$

$$[A^{-}] = C_{A}^{-} + [H_3O^{+}]$$

And because we have weak acids then

$$[HA] \cong C_{HA}$$

$$[A^-] \cong C_{A-}$$

$$Ka = \frac{[H_3O^+][A^-]}{[HA]}$$

$$[H_3O^+] = K_a \frac{[HA]}{[A^-]}$$

$$[H_3O^+] = K_a \frac{c_{HA}}{c_{A^-}}$$

- log [H₃O] = -log K_a - log
$$\frac{C_{HA}}{C_{A-}}$$

$$pH = pKa + log \frac{c_A}{c_{HA}}$$

**
$$pH = pKa + log \frac{C_{salt}}{C_{acid}}$$
 (Henderson equation)

Example: what is the pH of a solution that is (0.40 M) in formic acid (Ka= 1.77 x 10^{-4}) and (1.0 M) in sodium formate? compare it with the pH of 0.4 M formic acid solution.

Solution:

The pH of the solution will be affected by Ka of formic acid (HCOOH) and K_b of formate ion (HCOO⁻)

$$HCOONa \rightarrow HCOO^{-} + Na^{+}$$

$$HCOOH + H_2O \rightleftharpoons HCOO^- + H_3O^+$$
 Ka = 1.77 x10⁻⁴

$$\text{HCOO}^- + \text{H}_2\text{O} \rightleftharpoons \text{HCOOH} + \text{OH}^- \qquad \text{K}_b = \frac{Kw}{Ka} = 5.65 \text{ x } 10^{-11}$$

Since Ka of formic acid $>> K_b$ for formate the solution will be acidic and Ka will determine the H_3O^+ concentration.

$$pH = pKa + log \frac{C_{salt}}{C_{acid}}$$

$$pKa = -\log Ka = -\log (1.77 \times 10^{-4}) = 3.75$$

$$pH = 3.75 + \log \frac{1.0}{0.4} = 4.14$$

Check if $\frac{[\text{H3O}^+]}{[\text{HCOOH}]} \times 100 \% < 10 \%$ Then approximation is valid

$$[H_3O^+]=10^{-pH}=10^{-4.14}=7.2 \text{ x } 10^{-5}$$

$$\frac{7.2 \times 10^{-5}}{0.4} \times 100\% = 0.018\%$$
 (The approximation is valid)

B) The pH of the acid-only solution

$$[H_3O^+] = \sqrt{K_a \cdot C}$$

$$[H_3O^+] = \sqrt{1.77 \times 10^{-4} \times 0.4} = 8.41 \times 10^{-3}$$

$$pH = -log(8.41x10^{-3}) = 2.07$$

Practice Exercise:

- 1.What is the pH of a solution containing 0.3 M HCOOH and 0.52 M HCOOK? Compare your result with the pH of a 0.3 M HCOOH solution($Ka = 1.77 \times 10^{-4}$).
- 2. Determine the pH of (a) a 0.40 M CH₃COOH solution ($Ka = 1.8 \times 10^{-5}$),
- (b) a solution that is 0.40 M CH₃COOH and 0.20 M CH₃COONa.

B) Basic Buffers

It is composed of a solution of a weak base (B) and it`s conjugate acid (Salt) BH^+ e.g : NH_3 - NH_4Cl .

1)
$$B + H_2O \rightleftharpoons BH^+ + OH^ K_b = \frac{[OH^-][BH^+]}{[B]}$$

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$

2)
$$BH^+ + H_2O \rightleftharpoons H_3O^+ + B$$
 $K_a = \frac{Kw}{Kb} = \frac{[H_3O^+][B]}{[BH^+]}$

$$NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$$

[B] will decrease in equilibrium ①by amount [OH-] & increase in equilibrium ②by [H₃O+]

Then
$$[B] = C_B - [OH^-] + [H_3O^+]$$

Similarly [BH⁺] will increase in equilibrium 1 By [OH⁻] and decrease in equilibrium 2 by [H₃O⁺].

Then
$$[BH^+] = C_{BH+} + [OH^-] - [H_3O^+]$$

$$[B] \equiv C_B$$
 and $[BH^+] \equiv C_{BH^+}$ (by approximation)

$$K_b = \frac{[\mathsf{OH}^-][\mathsf{BH}^+]}{[\mathsf{B}]}$$

$$[OH^-] = K_b \frac{C_B}{C_{BH^+}}$$

$$pOH = pK_b + log \frac{[BH^+]}{[B]}$$

$$pOH = pK_b + log \frac{C_{salt}}{C_{base}}$$
 (Henderson equation)

In General:

$$pH = pK_a + log \frac{C_{salt}}{C_{acid}}$$
 (for acidic buffer)

$$pOH = pK_b + log \frac{c_{salt}}{c_{base}}$$
 (for basic buffer)

$$pH = 14 - pOH$$

Example:

Calculate the pH of a solution that is 0.1 M in NH_3 ($K_b = 1.75 \times 10^{-5}$) and 0.15 M in NH_4Cl .

Solution:

$$NH_4Cl \rightarrow NH_4^+ + Cl^-$$

$$NH_4^+ + H_2O \Rightarrow NH_3 + H_3O^+$$
 $Ka = \frac{K_w}{K_b} = \frac{10^{-14}}{1.75 \times 10^{-5}} = 5.7 \times 10^{-10}$

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^ K_b = 1.75 x 10^{-5}$$

because $K_b >> K_a$ the solution is assumed to be basic

$$pOH = pK_b + log \frac{c_{salt}}{c_{base}}$$
 (for basic buffer)

$$pK_b = -log K_b = -log (1.75 \times 10^{-5}) = 4.75$$

$$pOH = 4.75 + log \frac{0.15}{0.1} = 4.93$$

To check the validity of approximation we calculate [OH-]

then Check if $\frac{[OH^-]}{[Base]} \times 100 \% < 10 \%$ Then approximation is valid

$$[OH^{-}] = 10^{-pOH} = 10^{-4.93} = 1.17 \times 10^{-5}$$

Then
$$\frac{1.17 \times 10^{-5}}{0.2}$$
 x 100 % = 5.85 x 10⁻³ (approximation is valid)

$$pH = 14 - 4.93 = 9.07$$

Exercise:

Determine the pH of (a) a 0.20 M NH₃ solution, (b) a solution that is 0.20 M in NH₃ and 0.30 M NH₄Cl.

Properties of buffer solution:

1 Effect of dilution:

The pH of the buffer solution remains independent of dilution until the concentration of species it contains is decreased to the point where the approximation mentioned above becomes invalid.

Example: calculate the change in pH of a buffer containing (0.4M) Benzoic acid C_6H_5COOH (Ka =6.3 x10⁻⁵) and (1M) sodium benzoate C_6H_5COONa after dilution by a factor of 10 times •

Solution:

$$C_6H_5COONa \rightarrow C_6H_5COO^- + Na^+$$

$$C_6H_5COOH + H_2O \rightleftharpoons C_6H_5COO^- + H_3O^+$$
 Ka = 6.3 x10⁻⁵

$$C_6H_5COO^- + H_2O \rightleftharpoons C_6H_5COOH + OH^- \qquad K_b = \frac{Kw}{Ka} = 1.58 \times 10^{-10}$$

Since Ka of benzoic acid \gg K_b for benzoate the solution will be acidic.

$$pH = pKa + log \frac{[C6H5COONa]}{[C6H5COOH]}$$

$$pKa = -\log(6.3 \times 10^{-5}) = 4.2$$

a. Before Dilution

$$pH = 4.2 + \log \frac{1}{0.4} = 4.59$$

Check if $\frac{[\text{H30}^+]}{[\text{C6H5COOH}]} \times 100\% < 10\%$ Then approximation is valid

$$[H_3O^+] = 10^{-pH} = 10^{-4.59} = 2.57 \times 10^{-5}$$

$$\frac{2.57 \times 10^{-5}}{0.4} \times 100\% = 0.0064\%$$
 (The approximation is valid)

b. After dilution with 10 times.

$$M_1V_1 \ = \ M_2V_2$$

$$0.4 x1 = M_2 x 10$$

$$[C_6H_5COOH] = \frac{0.4}{10} = 0.04M$$

$$1 x 1 = M_2 x 10$$

$$[C_6H_5COO^-] = \frac{1}{10} = 0.1M$$

$$pH = pKa + log \frac{[C6H5COONa]}{[C6H5COOH]} = 4.2 + log \frac{0.1}{0.04} = 4.59$$

Check if $\frac{[\text{H}30^+]}{[\text{C}6\text{H}5\text{C}00\text{H}]} \times 100 \% < 10 \%$ Then approximation is valid

$$[H_3O^+] = 10^{-pH} = 10^{-4.59} = 2.57 \text{ x } 10^{-5}$$

$$\frac{2.57 \times 10^{-5}}{0.04} \times 100\% = 0.0064\%$$
 (The approximation is valid)

 \therefore NO change in pH occurs after 10 times dilution($\Delta PH = 0$)

(2) Effect of adding strong acid or base:

Buffer solution resists the pH change after the addition of a small amount of strong acid or base.

Example:

Calculate the pH change that takes place when 100 mL of:

is added separately to 400 mL of buffer solution of (0.3M) NH_4Cl and (0.2M) NH_3 ($K_b = 1.75 \times 10^{-5}$).

Solution:

A.The original buffer before addition

$$NH_4Cl \rightarrow NH_4^+ + Cl^-$$

$$NH_4^+ + H_2O \Rightarrow NH_3 + H_3O^+$$
 $Ka = \frac{K_w}{K_h} = \frac{10^{-14}}{1.75 \times 10^{-5}} = 5.7 \times 10^{-10}$

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^ K_b = 1.75 x 10^{-5}$$

because $K_b >> K_a$ the solution is assumed to be basic

$$pOH = pK_b + log \frac{C_{salt}}{C_{base}}$$
 (for basic buffer)

$$pK_b = - log K_b = - log (1.75 \times 10^{-5}) = 4.76$$

$$pOH = pK_b + log \frac{C_{NH_4Cl}}{C_{NH_3}} = 4.76 + log \frac{0.3}{0.2} = 4.93$$

To check the validity of approximation we calculate [OH-] then

Check if
$$\frac{[OH-]}{[Base]} \times 100 < 10 \%$$
 Then approximation is valid

$$[OH^{-}] = 10^{-pOH} = 10^{-4.93} = 1.17 \times 10^{-5}$$

Then
$$\frac{1.17 \times 10^{-5}}{0.2}$$
 x $100\% = 5.85$ x 10^{-3} % (approximation is valid)

$$pH = 14 - 4.93 = 9.07$$

B. after the addition of a strong base or acid

1) addition of NaOH converts part of NH₄⁺ in the buffer to NH₃

$$NH_4^+ + OH^- \rightleftharpoons NH_3 + H_2O$$
 (OH from NaOH)

The analytical concentration of NH₃ and NH₄Cl become :

$$C_{NH_3} = \frac{\text{original No.of moles of NH}_3 + \text{moles of produced NH}_3}{\text{Total New volume (L)}}$$

Or
$$C_{NH_3} = \frac{\text{original No.of mmoles of NH}_3 + \text{mmoles of produced NH}_3}{\text{Total New volume (mL)}}$$

No. of moles of produced $NH_3 = No.$ of moles of reacted NaOH

$$C_{NH_3} = \frac{M_{NH_3}V_{NH_3} + M_{NaOH}V_{NaOH}}{V_{NH_3} + V_{NaOH}}$$

$$C_{NH_3} = \frac{400 \times 0.2 + 100 \times 0.05}{[400 + 100]} = \frac{85}{500} = 0.17 \text{M}$$

$$C_{NH4+} = \frac{\text{original No. of moles of NH}_4^+ - \text{moles of reacted NH}_4^+}{\text{Total New volume(L)}}$$

$$\begin{array}{ccc} Or \ C_{NH4+} & = \ \frac{original \ No. \ of \ mmoles \ of \ NH_4{}^+ - \ mmoles \ of \ reacted \ NH_4{}^+}{Total \ New \ volume(mL)} \end{array}$$

No. of moles of consumed NH_4^+ = No. of moles of reacted NaOH

$$C_{NH_4Cl} = \frac{M_{NH_4Cl}V_{NH_4Cl} - M_{NaOH}V_{NaOH}}{VNH_4Cl + V_{NaOH}}$$

$$C_{NH_4Cl} = \frac{400 \times 0.3 - 100 \times 0.05}{[400 + 100]} = \frac{115}{500} = 0.23M$$

pOH =
$$4.76 + \log \frac{0.23}{0.17} = 4.89$$
 (Henderson equation)

To check the validity of the approximation we calculate

if $\frac{[OH^-]}{[Base]} \times 100 < 10 \%$ Then the approximation is valid

$$[OH^{-}] = 10^{-pOH} = 10^{-4.89} = 1.29 \text{ x } 10^{-5}$$

Then
$$\frac{1.29 \times 10^{-5}}{0.17}$$
 x 100 % = 7.59 x 10⁻³ (approximation is valid)

$$pH = 14 - 4.89 = 9.11$$

$$\Delta pH = 9.11 - 9.07 = 0.04$$

2) The addition of HCl converts part of NH₃ to NH₄Cl

$$NH_3 + H_3O^+ \rightleftharpoons NH_4^+ + H_2O (H_3O^+ \text{ from HCl})$$

$$C_{NH3} \ = \ \frac{\text{original No.of moles of NH}_3 - \text{moles of reacted NH}_3}{\text{Total New volume (L)}}$$

$$Or \ C_{NH3} \ = \ \frac{original \ No.of \ mmoles \ of \ NH_3 - \ mmoles \ of \ reacted \ NH_3}{Total \ New \ volume \ (mL)}$$

No. of moles of consumed $NH_3 = No.$ of moles of reacted HCl

$$C_{NH_3} = \frac{M_{NH_3}V_{NH_3} - M_{HCl}V_{HCl}}{V_{NH_3} + V_{HCl}}$$

$$C_{NH_3} = \frac{400 \times 0.2 - 100 \times 0.05}{[400 + 100]} = 0.150$$
M

$$C_{\text{NH}_4}^+ = \frac{\text{original No of moles of NH}_4^+ + \text{moles of produced NH}_4^+}{\text{Total New volume (L)}}$$

Or
$$C_{NH_4}^+ = \frac{\text{original No of mmoles of NH}_4^+ + \text{mmoles of produced NH}_4^+}{\text{Total New volume (mL)}}$$

No. of moles of produced $NH_4 = No.$ of moles of reacted HCl

$$C_{NH_4Cl} = \frac{M_{NH_4Cl}V_{NH_4Cl} + M_{HCl}V_{HCl}}{V_{NH_4Cl} + V_{HCl}}$$

$$C_{NH_4Cl} = \frac{400 \times 0.3 + 100 \times 0.05}{[400 + 100]} = 0.25M$$

pOH= pK_b +
$$log \frac{NH_4Cl}{C_{NH_3}}$$
 (Henderson equation)

pOH =
$$4.76 + \log \frac{0.25}{0.15} = 4.98$$

To check the validity of approximation we calculate [OH-] then

Check if
$$\frac{[OH^-]}{[Base]} \times 100 < 10 \%$$
 Then approximation is valid

$$[OH^{-}] = 10^{-pOH} = 10^{-4.98} = 1.05 \times 10^{-5}$$

Then
$$\frac{1.05 \times 10^{-5}}{0.15}$$
 x $100\% = 0.007\%$ (approximation is valid)

$$pH = 14 - 4.98 = 9.02$$

$$\Delta pH = 9.02 - 9.07 = -0.05$$

Addition	ΔрН
100 mL 0.05 M NaOH	0.04
100 mL 0.05 M HC1	- 0.05

Example

Calculate the pH change that take place when 100 mL of:

is added seperately to 400 mL of buffer solution of (0.1M) CH₃COOH and (0.2M) CH₃COONa ($K_a = 1.8 \ x10^{-5}$).

solution:

a. The pH of the buffer before addition:

$$CH_3COONa \rightarrow CH_3COO^- + Na^+$$

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$
 $Ka = 1.8 \times 10^{-5}$

$$CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^- \qquad K_b = \frac{K_W}{K_a} = 5.55 \times 10^{-10}$$

Since Ka of acetic acid >> K_b for acetate the solution will be acidic and Ka will determine the H_3O^+ concentration.

$$pH = pKa + log \; \frac{c_{salt}}{c_{acid}}$$

$$pKa = -\log Ka = -\log (1.8 \times 10^{-5}) = 4.74$$

$$pH = 4.74 + log \frac{0.2}{0.1} = 5.04$$

Check if $\frac{[H30^+]}{[CH3COOH]} \times 100 \leftarrow 10 \%$ Then approximation is valid

$$[H_3O^+] = 10^{-pH} = 10^{-5.06} = 8.7 \text{ x } 10^{-6}$$

$$\frac{8.7 \times 10^{-6}}{0.1}$$
 x 100 = 0.009 % (*The approximation is valid*)

B. addition of 100 mL of 0.05 M NaOH

$$CH_3COOH + NaOH \rightleftharpoons CH_3COONa + H_2O$$

From the above reaction [CH₃COOH] is decreased and [CH₃COONa] is increased

 $C_{CH_{3COONa}}$

No. of moles of CH₃COONa produced = No. of moles of NaOH reacted

 $C_{CH_{3COONa}}$

= original No. of mmoles of CH₃COONa + mmoles of NaOH reacted

Total New volume (mL)

$$C_{CH_{3COONa}} = \frac{400 \times 0.2 + 100 \times 0.05 \text{ mmoles}}{400 + 100} = 0.17$$

$$C_{CH_{3COOH}} = \frac{original\ No.\ of\ mmoles\ of\ CH_{3}COOH-\ mmoles\ of\ CH_{3}COOH\ consumed}{Total\ New\ volume\ (mL)}$$

No. of moles of CH₃COOH consumed = No. of moles of NaOH reacted

$$C_{CH_{3COOH}} = \frac{\text{original No. of mmoles of } CH_{3}COOH - \text{ mmoles of } \textit{NaOH} \text{ reacted}}{\text{Total New volume (mL)}}$$

$$C_{CH_{3COOH}} = \frac{(400 \times 0.1 - 100 \times 0.05) \text{ m moles}}{\text{Total New volume (mL)}} = \frac{(35) \text{ m moles}}{500} = 0.07$$

$$pH = 4.74 + log \frac{0.17}{0.07} = 5.12$$

$$\Delta \text{ pH} = 5.12 - 5.06 = 0.06$$

c) Addition of 100 mL of 0.05 HCl to the buffer

$$CH_3COONa \rightarrow CH_3COO^- + Na^+$$

From the above reaction [CH₃COONa] is decreased and [CH₃COOH] is increased

$$C_{CH_{3COONa}} = \frac{original\ No.\ of\ mmoles\ of\ CH_{3}COONa-mmoles\ of\ CH_{3}COONa\ consumed}{Total\ New\ volume\ (mL)}$$

No. of moles of CH₃COONa consumed = No. of moles of HCl reacted

$$C_{CH_{3COONa}} = \frac{\text{original No. of mmoles of CH}_{3}COONa - \text{mmoles of HCl reacted}}{\text{Total New volume (mL)}}$$

$$C_{CH_{3COONa}} = \frac{400 \times 0.2 - 100 \times 0.05 \text{ mmoles}}{400 + 100} = 0.15$$

$$C_{CH_{3COOH}} = \frac{\text{original No. of mmoles of } CH_{3}COOH + \text{ mmoles of } CH_{3}COOH \text{ produced}}{\text{Total New volume (mL)}}$$

No. of moles of CH₃COOH produced = No. of moles of HCl reacted

$$C_{\textit{CH}_{3\textit{COOH}}} = \frac{\text{original No. of mmoles of CH}_{3}\text{COOH} + \text{mmoles of } \textit{HCl} \text{ reacted}}{\text{Total New volume (mL)}}$$

$$C_{CH_{3COOH}} = \frac{(400 \times 0.1 + 100 \times 0.05) \text{m moles}}{\text{Total New volume (mL)}} = \frac{(45) \text{m moles}}{500} = 0.09$$

$$pH = 4.74 + log \frac{0.15}{0.09} = 4.96$$

$$\Delta \text{ pH} = 4.96 - 5.06 = -0.1$$

Addition	∆рH
100 mL 0.05 M NaOH	0.06
100 mL 0.05 M HCl	- 0.1

Exercise:

- 1. Calculate the pH of the buffer solution of 0.40 M HF (Ka = 3.2×10^{-4}) and 0.48 M KF. What is the pH after the addition of 15 mL of 0.10 M HCl to 50 mL of the buffer solution?
- 2. Determine the pH of (a) a 0.20 M NH₃ ($K_b = 1.75 \times 10^{-5}$) solution,
- (b) a solution that is 0.20 M in NH_3 and 0.30 M in NH_4Cl .

Preparation of buffer:

To prepare a buffer, it is to choose the acid with the pK_a close to the desired \underline{pH} . Usually, buffers have a useful \underline{pH} range = $pK_a \pm 1$, but the closer it is to the weak acid's pKa, is the better.

Example:

Describe how you might prepare approximately (500 mL) of pH 4.5 buffer solution from 1 M acetic acid CH₃COOH (Ka=1.74 x10⁻⁵) and sodium acetate CH₃COONa (82.03 g/mole).

Solution:

For acidic buffer (pH= 4.5)

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

 $pH = pKa + log \, \frac{c_{salt}}{c_{acid}} \ \, (\, \, Henderson \, \, equation \, \, for \, acidic \, \, buffers)$

$$pKa = -log(1.8 \times 10^{-5}) = 4.74$$

$$4.5 = 4.74 + \log \frac{[CH_3COO^-]}{[CH_3COOH]}$$

$$4.5 = 4.74 + log \frac{[\mathit{CH}_{3}\mathit{COO}^{-}]}{[1]}$$

$$4.5 - 4.74 = \log [CH_3COO^{-}] - \log 1$$

$$\log [CH_3COO^-] = -0.24$$

$$[CH_3COO^-] = 10^{-0.24} = 0.575 M$$

Mass of CH_3COONa needed = $Molarity(M) \times V(liter) \times Mwt$

Mass of CH₃COONa = 0.575 (mol/L) x
$$\frac{500}{1000}$$
 L x 82.03(g/mol) = 23.58 g

The required buffer is to be made by dissolution of 23.58 g of CH₃COONa and completing the volume to 500 mL with 1M CH₃COOH